1
|
Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Adv Drug Deliv Rev 2022; 183:114141. [PMID: 35149123 DOI: 10.1016/j.addr.2022.114141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 01/15/2023]
Abstract
Mucus covers all wet epithelia and acts as a protective barrier. In the airways of the lungs, the viscoelastic mucus meshwork entraps and clears inhaled materials and efficiently removes them by mucociliary escalation. In addition to physical and chemical interaction mechanisms, the role of macromolecular glycoproteins (mucins) and antimicrobial constituents in innate immune defense are receiving increasing attention. Collectively, mucus displays a major barrier for inhaled aerosols, also including therapeutics. This review discusses the origin and composition of tracheobronchial mucus in relation to its (barrier) function, as well as some pathophysiological changes in the context of pulmonary diseases. Mucus models that contemplate key features such as elastic-dominant rheology, composition, filtering mechanisms and microbial interactions are critically reviewed in the context of health and disease considering different collection methods of native human pulmonary mucus. Finally, the prerequisites towards a standardization of mucus models in a regulatory context and their role in drug delivery research are addressed.
Collapse
|
2
|
Sriwilaijaroen N, Suzuki Y. Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods Mol Biol 2022; 2556:205-242. [PMID: 36175637 DOI: 10.1007/978-1-0716-2635-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The large variation of influenza A viruses (IAVs) in various susceptible hosts and their rapid evolution, which allows host/tissue switching, host immune escape, vaccine escape, and drug resistance, are difficult challenges for influenza control in all countries worldwide. Access and binding of the IAV to actual receptors at endocytic sites is critical for the establishment of influenza infection. In this chapter, the progress in identification of and roles of glycans and non-glycans on the epithelium and in the immune system in H1-H18 IAV infections are reviewed. The first part of the review is on current knowledge of H1-H16 IAV receptors on the epithelium including sialyl glycans, other negatively charged glycans, and annexins. The second part of the review focuses on H1-H16 IAV receptors in the immune system including acidic surfactant phospholipids, Sia on surfactant proteins, the carbohydrate recognition domain (CRD) of surfactant proteins, Sia on mucins, Sia and C-type lectins on macrophages and dendritic cells, and Sia on NK cells. The third part of the review is about a possible H17-H18 IAV receptor. Binding of these receptors to IAVs may result in inhibition or enhancement of IAV infection depending on their location, host cell type, and IAV strain. Among these receptors, host sialyl glycans are key determinants of viral hemagglutinin (HA) lectins for H1-H16 infections. HA must acquire mutations to bind to sialyl glycans that are dominant on a new target tissue when switching to a new host for efficient transmission and to bind to long sialyl glycans found in the case of seasonal HAs with multiple glycosylation sites as a consequence of immune evasion. Although sialyl receptors/C-type lectins on immune cells are decoy receptors/pathogen recognition receptors for capturing viral HA lectin/glycans protecting HA antigenic sites, some IAV strains do not escape, such as by release with neuraminidase, but hijack these molecules to gain entry and replication in immune cells. An understanding of the virus-host battle tactics at the receptor level might lead to the establishment of novel strategies for effective control of influenza.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
3
|
Huck B, Hidalgo A, Waldow F, Schwudke D, Gaede KI, Feldmann C, Carius P, Autilio C, Pérez-Gil J, Schwarzkopf K, Murgia X, Loretz B, Lehr CM. Systematic Analysis of Composition, Interfacial Performance and Effects of Pulmonary Surfactant Preparations on Cellular Uptake and Cytotoxicity of Aerosolized Nanomaterials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Benedikt Huck
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| | - Alberto Hidalgo
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
| | - Franziska Waldow
- Research Center Borstel Leibniz Lung Center Parkallee 1-40 23845 Borstel Germany
- German Center for Infection Research Thematic Translational Unit Tuberculosis Site Research Center Borstel Parkallee 1-40 23845 Borstel Germany
| | - Dominik Schwudke
- Research Center Borstel Leibniz Lung Center Parkallee 1-40 23845 Borstel Germany
- German Center for Infection Research Thematic Translational Unit Tuberculosis Site Research Center Borstel Parkallee 1-40 23845 Borstel Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN) Research Center Borstel Leibniz Lung Center Site Research Center Borstel Parkallee 1-40 Borstel 23845 Germany
| | - Karoline I. Gaede
- BioMaterialBank Nord, Research Center Borstel Leibniz Lung Center Parkallee 35 23845 Borstel Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN) Research Center Borstel Leibniz Lung Center Site Research Center Borstel Parkallee 1-40 Borstel 23845 Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology 76131 Karlsruhe Germany
| | - Patrick Carius
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute “Hospital 12 de Octubre (imas12)” Complutense University 28040 Madrid Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute “Hospital 12 de Octubre (imas12)” Complutense University 28040 Madrid Spain
| | - Konrad Schwarzkopf
- Klinikum Saarbrücken Department of Anaesthesia and Intensive Care 66119 Saarbrücken Germany
| | - Xabier Murgia
- Biotechnology Area GAIKER Technology Centre 48170 Zamudio Spain
| | - Brigitta Loretz
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| | - Claus-Michael Lehr
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| |
Collapse
|
4
|
Aagaard JB, Bjerrum KB, Graversen JH, Henriksen ML, Hansen SWK. Novel Monoclonal Antibodies Against Native Human Collectin L1, Using the Heteromeric Complex CL-LK as Immunogen. Monoclon Antib Immunodiagn Immunother 2018; 37:207-211. [PMID: 30362927 DOI: 10.1089/mab.2018.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collectin LK (CL-LK) is a recently described collectin complex, which upon binding to microbial glycoconjugates, activates the lectin pathway of the complement system, and thereby contributes to the removal of invading microorganisms. The complex consists of the two collectins; Collectin K1 (kidney 1 alias CL-11) and Collectin L1 (liver 1 alias CL-10). At present, most efforts have been made on the characterization of CL-K1, and little is known about the function of CL-L1 and its association with diseases. Deficiency of either of the two collectins is associated with the developmental syndrome 3MC, whereas increased plasma levels of CL-K1 are associated with disseminated intravascular coagulation. Using CL-LK purified from human plasma as an immunogen, we succeed in generating seven monoclonal antibodies (mAbs) with specificity for CL-L1. All seven mAbs recognize both native and recombinant CL-L1. In addition, four of the mAbs were successful in immunohistochemical detection of CL-L1 in human tissues. To our knowledge, these are the first mAbs specific for human native CL-L1 described in the literature, and we expect them to be of great importance in characterizing the function of CL-L1, as well as for the study of CL-L1's association with disease.
Collapse
Affiliation(s)
- Josephine B Aagaard
- Institute of Molecular Medicine, University of Southern Denmark , Odense, Denmark
| | - Karen B Bjerrum
- Institute of Molecular Medicine, University of Southern Denmark , Odense, Denmark
| | - Jonas H Graversen
- Institute of Molecular Medicine, University of Southern Denmark , Odense, Denmark
| | - Maiken L Henriksen
- Institute of Molecular Medicine, University of Southern Denmark , Odense, Denmark
| | - Soren W K Hansen
- Institute of Molecular Medicine, University of Southern Denmark , Odense, Denmark
| |
Collapse
|
5
|
Stoeckelhuber M, Feuerhake F, Schmitz C, Wolff KD, Kesting MR. Immunolocalization of Surfactant Proteins SP-A, SP-B, SP-C, and SP-D in Infantile Labial Glands and Mucosa. J Histochem Cytochem 2018; 66:531-538. [PMID: 29601229 PMCID: PMC6055263 DOI: 10.1369/0022155418766063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/16/2018] [Indexed: 11/22/2022] Open
Abstract
Surfactant proteins in different glandular structures of the oral cavity display antimicrobial activity for protection of invading microorganisms. Moreover, they are involved in lowering liquid tension in fluids and facilitate secretion flows. Numerous investigations for studying the occurrence of surfactant proteins in glandular tissues were performed using different methods. In the oral cavity, minor salivary glands secrete saliva continuously for the maintenance of a healthy oral environment. For the first time, we could show that infantile labial glands show expression of the surfactant proteins (SP) SP-A, SP-B, SP-C, and SP-D in acinar cells and the duct system in different intensities. The stratified squamous epithelium of the oral mucosa revealed positive staining for SPs in various cell layers.
Collapse
Affiliation(s)
- Mechthild Stoeckelhuber
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany
| | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany
| | - Marco R. Kesting
- Department of Oral and Maxillofacial Surgery, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L859-L872. [PMID: 29025712 PMCID: PMC5792182 DOI: 10.1152/ajplung.00285.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|