1
|
Krusenstjerna AC, Jusufovic N, Saylor TC, Stevenson B. DnaA modulates the gene expression and morphology of the Lyme disease spirochete. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598065. [PMID: 38895450 PMCID: PMC11185795 DOI: 10.1101/2024.06.08.598065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All bacteria encode a multifunctional DNA-binding protein, DnaA, which initiates chromosomal replication. Despite having the most complex, segmented bacterial genome, little is known about Borrelia burgdorferi DnaA and its role in maintaining the spirochete's physiology. In this work we utilized inducible CRISPR-interference and overexpression to modulate cellular levels of DnaA to better understand this essential protein. Dysregulation of DnaA, either up or down, increased or decreased cell lengths, respectively, while also significantly slowing replication rates. Using fluorescent microscopy, we found the DnaA CRISPRi mutants had increased numbers of chromosomes with irregular spacing patterns. DnaA-depleted spirochetes also exhibited a significant defect in helical morphology. RNA-seq of the conditional mutants showed significant changes in the levels of transcripts involved with flagellar synthesis, elongation, cell division, virulence, and other functions. These findings demonstrate that the DnaA plays a commanding role in maintaining borrelial growth dynamics and protein expression, which are essential for the survival of the Lyme disease spirochete.
Collapse
Affiliation(s)
- Andrew C Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Nerina Jusufovic
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Timothy C Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Ba X, Matuszewska M, Kalmar L, Fan J, Zou G, Corander D, Raisen CL, Li S, Li L, Weinert LA, Tucker AW, Grant AJ, Zhou R, Holmes MA. High-Throughput Mutagenesis Reveals a Role for Antimicrobial Resistance- and Virulence-Associated Mobile Genetic Elements in Staphylococcus aureus Host Adaptation. Microbiol Spectr 2023; 11:e0421322. [PMID: 36815781 PMCID: PMC10101091 DOI: 10.1128/spectrum.04213-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Desirée Corander
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Claire L. Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Saaki TNV, Teng Z, Wenzel M, Ventroux M, Carballido-Lόpez R, Noirot-Gros MF, Hamoen LW. SepF supports the recruitment of the DNA translocase SftA to the Z-ring. Mol Microbiol 2022; 117:1263-1274. [PMID: 35411648 PMCID: PMC9320952 DOI: 10.1111/mmi.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
In many bacteria, cell division begins before the sister chromosomes are fully segregated. Specific DNA translocases ensure that the chromosome is removed from the closing septum, such as the transmembrane protein FtsK in Escherichia coli. Bacillus subtilis contains two FtsK homologues, SpoIIIE and SftA. SftA is active during vegetative growth whereas SpoIIIE is primarily active during sporulation and pumps the chromosome into the spore compartment. FtsK and SpoIIIE contain several transmembrane helices, however SftA is assumed to be a cytoplasmic protein. It is unknown how SftA is recruited to the cell division site. Here we show that SftA is a peripheral membrane protein, containing an N-terminal amphipathic helix that reversibly anchors the protein to the cell membrane. Using a yeast two-hybrid screen we found that SftA interacts with the conserved cell division protein SepF. Based on extensive genetic analyses and previous data we propose that the septal localization of SftA depends on either SepF or the cell division protein FtsA. Since SftA seems to interfere with the activity of SepF, and since inactivation of SepF mitigates the sensitivity of a ∆sftA mutant for ciprofloxacin, we speculate that SftA might delay septum synthesis when chromosomal DNA is in the vicinity.
Collapse
Affiliation(s)
- Terrens N V Saaki
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Zihao Teng
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Michaela Wenzel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.,current address: Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Magali Ventroux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Rut Carballido-Lόpez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | | | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Chan H, Mohamed AMT, Grainge I, Rodrigues CDA. FtsK and SpoIIIE, coordinators of chromosome segregation and envelope remodeling in bacteria. Trends Microbiol 2021; 30:480-494. [PMID: 34728126 DOI: 10.1016/j.tim.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
The translocation of DNA during bacterial cytokinesis is mediated by the SpoIIIE/FtsK family of proteins. These proteins ensure efficient chromosome segregation into sister cells by ATP-driven translocation of DNA and they control chromosome dimer resolution. How FtsK/SpoIIIE mediate chromosome translocation during cytokinesis in Gram-positive and Gram-negative organisms has been the subject of debate. Studies on FtsK in Escherichia coli, and recent work on SpoIIIE in Bacillus subtilis, have identified interactions between each translocase and the division machinery, supporting the idea that SpoIIIE and FtsK coordinate the final steps of cytokinesis with completion of chromosome segregation. Here we summarize and discuss the view that SpoIIIE and FtsK play similar roles in coordinating cytokinesis with chromosome segregation, during growth and differentiation.
Collapse
Affiliation(s)
- Helena Chan
- iThree Institute, University of Technology, Sydney, NSW, Australia
| | | | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, NSW, Australia.
| | | |
Collapse
|
6
|
Torasso Kasem EJ, Angelov A, Werner E, Lichev A, Vanderhaeghen S, Liebl W. Identification of New Chromosomal Loci Involved in com Genes Expression and Natural Transformation in the Actinobacterial Model Organism Micrococcus luteus. Genes (Basel) 2021; 12:genes12091307. [PMID: 34573289 PMCID: PMC8467076 DOI: 10.3390/genes12091307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Historically, Micrococcus luteus was one of the first organisms used to study natural transformation, one of the main routes of horizontal gene transfer among prokaryotes. However, little is known about the molecular basis of competence development in M. luteus or any other representative of the phylum of high-GC Gram-positive bacteria (Actinobacteria), while this means of genetic exchange has been studied in great detail in Gram-negative and low-GC Gram-positive bacteria (Firmicutes). In order to identify new genetic elements involved in regulation of the comEA-comEC competence operon in M. luteus, we conducted random chemical mutagenesis of a reporter strain expressing lacZ under the control of the comEA-comEC promoter, followed by the screening of dysregulated mutants. Mutants with (i) upregulated com promoter under competence-repressing conditions and (ii) mutants with a repressed com promoter under competence-inducing conditions were isolated. After genotype and phenotype screening, the genomes of several mutant strains were sequenced. A selection of putative com-influencing mutations was reinserted into the genome of the M. luteus reporter strain as markerless single-nucleotide mutations to confirm their effect on com gene expression. This strategy revealed mutations affecting com gene expression at genetic loci different from previously known genes involved in natural transformation. Several of these mutations decreased transformation frequencies by several orders of magnitude, thus indicating significant roles in competence development or DNA acquisition in M. luteus. Among the identified loci, there was a new locus containing genes with similarity to genes of the tad clusters of M. luteus and other bacteria.
Collapse
Affiliation(s)
- Enzo Joaquin Torasso Kasem
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Angel Angelov
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
- Institute of Medical Microbiology and Hygiene, University Clinic Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Elisa Werner
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Antoni Lichev
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Sonja Vanderhaeghen
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; (E.J.T.K.); (A.A.); (E.W.); (A.L.); (S.V.)
- Correspondence: ; Tel.: +49-81-6171-545
| |
Collapse
|
7
|
Karaboja X, Ren Z, Brandão HB, Paul P, Rudner DZ, Wang X. XerD unloads bacterial SMC complexes at the replication terminus. Mol Cell 2021; 81:756-766.e8. [PMID: 33472056 DOI: 10.1016/j.molcel.2020.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.
Collapse
Affiliation(s)
- Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Payel Paul
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
8
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
9
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
10
|
Interactions Screenings Unearth Potential New Divisome Components in the Chlamydia-Related Bacterium, Waddlia chondrophila. Microorganisms 2019; 7:microorganisms7120617. [PMID: 31779160 PMCID: PMC6956297 DOI: 10.3390/microorganisms7120617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022] Open
Abstract
Chlamydiales order members are obligate intracellular bacteria, dividing by binary fission. However, Chlamydiales lack the otherwise conserved homologue of the bacterial division organizer FtsZ and certain division protein homologues. FtsZ might be functionally replaced in Chlamydiales by the actin homologue MreB. RodZ, the membrane anchor of MreB, localizes early at the division septum. In order to better characterize the organization of the chlamydial divisome, we performed co-immunoprecipitations and yeast-two hybrid assays to study the interactome of RodZ, using Waddlia chondrophila, a potentially pathogenic Chlamydia-related bacterium, as a model organism. Three potential interactors were further investigated: SecA, FtsH, and SufD. The gene and protein expression profiles of these three genes were measured and are comparable with recently described division proteins. Moreover, SecA, FtsH, and SufD all showed a peripheral localization, consistent with putative inner membrane localization and interaction with RodZ. Notably, heterologous overexpression of the abovementioned proteins could not complement E. coli mutants, indicating that these proteins might play different functions in these two bacteria or that important regulators are not conserved. Altogether, this study brings new insights to the composition of the chlamydial divisome and points to links between protein secretion, degradation, iron homeostasis, and chlamydial division.
Collapse
|
11
|
Single-Molecule Tracking of DNA Translocases in Bacillus subtilis Reveals Strikingly Different Dynamics of SftA, SpoIIIE, and FtsA. Appl Environ Microbiol 2018; 84:AEM.02610-17. [PMID: 29439991 DOI: 10.1128/aem.02610-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Like many bacteria, Bacillus subtilis possesses two DNA translocases that affect chromosome segregation at different steps. Prior to septum closure, nonsegregated DNA is moved into opposite cell halves by SftA, while septum-entrapped DNA is rescued by SpoIIIE. We have used single-molecule fluorescence microscopy and tracking (SMT) experiments to describe the dynamics of the two different DNA translocases, the cell division protein FtsA and the glycolytic enzyme phosphofructokinase (PfkA), in real time. SMT revealed that about 30% of SftA molecules move through the cytosol, while a fraction of 70% is septum bound and static. In contrast, only 35% of FtsA molecules are static at midcell, while SpoIIIE molecules diffuse within the membrane and show no enrichment at the septum. Several lines of evidence suggest that FtsA plays a role in septal recruitment of SftA: an ftsA deletion results in a significant reduction in septal SftA recruitment and a decrease in the average dwell time of SftA molecules. FtsA can recruit SftA to the membrane in a heterologous eukaryotic system, suggesting that SftA may be partially recruited via FtsA. Therefore, SftA is a component of the division machinery, while SpoIIIE is not, and it is otherwise a freely diffusive cytosolic enzyme in vivo Our developed SMT script is a powerful technique to determine if low-abundance proteins are membrane bound or cytosolic, to detect differences in populations of complex-bound and unbound/diffusive proteins, and to visualize the subcellular localization of slow- and fast-moving molecules in live cells.IMPORTANCE DNA translocases couple the late events of chromosome segregation to cell division and thereby play an important role in the bacterial cell cycle. The proteins fall into one of two categories, integral membrane translocases or nonintegral translocases. We show that the membrane-bound translocase SpoIIIE moves slowly throughout the cell membrane in B. subtilis and does not show a clear association with the division septum, in agreement with the idea that it binds membrane-bound DNA, which can occur through cell division across nonsegregated chromosomes. In contrast, SftA behaves like a soluble protein and is recruited to the division septum as a component of the division machinery. We show that FtsA contributes to the recruitment of SftA, revealing a dual role of FtsA at the division machinery, but it is not the only factor that binds SftA. Our work represents a detailed in vivo study of DNA translocases at the single-molecule level.
Collapse
|
12
|
Sinha AK, Possoz C, Durand A, Desfontaines JM, Barre FX, Leach DRF, Michel B. Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome. PLoS Genet 2018. [PMID: 29522563 PMCID: PMC5862497 DOI: 10.1371/journal.pgen.1007256] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It was recently reported that the recBC mutants of Escherichia coli, deficient for DNA double-strand break (DSB) repair, have a decreased copy number of their terminus region. We previously showed that this deficit resulted from DNA loss after post-replicative breakage of one of the two sister-chromosome termini at cell division. A viable cell and a dead cell devoid of terminus region were thus produced and, intriguingly, the reaction was transmitted to the following generations. Using genome marker frequency profiling and observation by microscopy of specific DNA loci within the terminus, we reveal here the origin of this phenomenon. We observed that terminus DNA loss was reduced in a recA mutant by the double-strand DNA degradation activity of RecBCD. The terminus-less cell produced at the first cell division was less prone to divide than the one produced at the next generation. DNA loss was not heritable if the chromosome was linearized in the terminus and occurred at chromosome termini that were unable to segregate after replication. We propose that in a recB mutant replication fork breakage results in the persistence of a linear DNA tail attached to a circular chromosome. Segregation of the linear and circular parts of this "σ-replicating chromosome" causes terminus DNA breakage during cell division. One daughter cell inherits a truncated linear chromosome and is not viable. The other inherits a circular chromosome attached to a linear tail ending in the chromosome terminus. Replication extends this tail, while degradation of its extremity results in terminus DNA loss. Repeated generation and segregation of new σ-replicating chromosomes explains the heritability of post-replicative breakage. Our results allow us to determine that in E. coli at each generation, 18% of cells are subject to replication fork breakage at dispersed, potentially random, chromosomal locations.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- Bacterial DNA stability, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (AKS); (BM)
| | - Christophe Possoz
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Adeline Durand
- Bacterial DNA stability, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Michel Desfontaines
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Evolution and maintenance of circular chromosomes, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David R. F. Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bénédicte Michel
- Bacterial DNA stability, Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (AKS); (BM)
| |
Collapse
|
13
|
Division-induced DNA double strand breaks in the chromosome terminus region of Escherichia coli lacking RecBCD DNA repair enzyme. PLoS Genet 2017; 13:e1006895. [PMID: 28968392 PMCID: PMC5638614 DOI: 10.1371/journal.pgen.1006895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/12/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022] Open
Abstract
Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type) or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant. RecBCD protein complex is an important player of DSB repair in bacteria and bacteria that cannot repair DNA double-stranded breaks (DSB) have a low viability. Whole genome sequencing analyses showed a deficit in specific sequences of the chromosome terminus region in recB mutant cells, suggesting terminus DNA degradation during growth. We studied here the phenomenon of terminus DNA loss by whole genome sequencing and microscopy analyses of exponentially growing bacteria. We tested all processes known to take place in the chromosome terminus region for a putative role in DNA loss: replication fork termination, dimer resolution, resolution of catenated chromosomes, and translocation of the chromosome arms in daughter cells during septum formation. None of the mutations that affect these processes prevents the phenomenon. However, we observed that terminus DNA loss is abolished in cells that cannot divide. We propose that in cells defective for RecBCD-mediated DSB repair the terminus region of the chromosome remains in the way of the growing septum during cell division, then septum closure triggers chromosome breakage and, in turn, DNA degradation.
Collapse
|
14
|
Beyene GT, Kalayou S, Riaz T, Tonjum T. Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis. BMC Microbiol 2017; 17:96. [PMID: 28431522 PMCID: PMC5399837 DOI: 10.1186/s12866-017-1004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background DNA processing chain A (DprA) is a DNA binding protein which is ubiquitous in bacteria, and is required for DNA transformation to various extents among bacterial species. However, the interaction of DprA with competence and recombination proteins is poorly understood. Therefore, the proteomes of whole Neisseria meningitidis (Nm) wildtype and dprA mutant cells were compared. Such a comparative proteomic analysis increases our understanding of the interactions of DprA with other Nm components and may elucidate its potential role beyond DNA processing in transformation. Results Using label-free quantitative proteomics, a total of 1057 unique Nm proteins were identified, out of which 100 were quantified as differentially abundant (P ≤ 0.05 and fold change ≥ |2|) in the dprA null mutant. Proteins involved in homologous recombination (RecA, UvrD and HolA), pilus biogenesis (PilG, PilT1, PilT2, PilM, PilO, PilQ, PilF and PilE), cell division, including core energy metabolism, and response to oxidative stress were downregulated in the Nm dprA null mutant. The mass spectrometry data are available via ProteomeXchange with identifier PXD006121. Immunoblotting and co-immunoprecipitation were employed to validate the association of DprA with PilG. The analysis revealed reduced amounts of PilG in the dprA null mutant and reduced amounts of DprA in the Nm pilG null mutant. Moreover, a number of pilus biogenesis proteins were shown to interact with DprA and /or PilG. Conclusions DprA interacts with proteins essential for Nm DNA recombination in transformation, pilus biogenesis, and other functions associated with the inner membrane. Inverse downregulation of Nm DprA and PilG expression in the corresponding mutants indicates a link between DNA processing and pilus biogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Getachew Tesfaye Beyene
- Department of Microbiology, University of Oslo, Oslo, Norway.,Present address: College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Shewit Kalayou
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Mekelle University College of Veterinary Medicine, Mekelle, Ethiopia
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tonjum
- Department of Microbiology, University of Oslo, Oslo, Norway. .,Department of Microbiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Vega-Cabrera LA, Guerrero A, Rodríguez-Mejía JL, Tabche ML, Wood CD, Gutiérrez-Rios RM, Merino E, Pardo-López L. Analysis of Spo0M function in Bacillus subtilis. PLoS One 2017; 12:e0172737. [PMID: 28234965 PMCID: PMC5325327 DOI: 10.1371/journal.pone.0172737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Spo0M has been previously reported as a regulator of sporulation in Bacillus subtilis; however, little is known about the mechanisms through which it participates in sporulation, and there is no information to date that relates this protein to other processes in the bacterium. In this work we present evidence from proteomic, protein-protein interaction, morphological, subcellular localization microscopy and bioinformatics studies which indicate that Spo0M function is not necessarily restricted to sporulation, and point towards its involvement in other stages of the vegetative life cycle. In the current study, we provide evidence that Spo0M interacts with cytoskeletal proteins involved in cell division, which suggest a function additional to that previously described in sporulation. Spo0M expression is not restricted to the transition phase or sporulation; rather, its expression begins during the early stages of growth and Spo0M localization in B. subtilis depends on the bacterial life cycle and could be related to an additional proposed function. This is supported by our discovery of homologs in a broad distribution of bacterial genera, even in non-sporulating species. Our work paves the way for re-evaluation of the role of Spo0M in bacterial cell.
Collapse
Affiliation(s)
- Luz Adriana Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Avenida Universidad 2001, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - José Luis Rodríguez-Mejía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - María Luisa Tabche
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Christopher D. Wood
- Laboratorio Nacional de Microscopía Avanzada, Avenida Universidad 2001, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rosa-María Gutiérrez-Rios
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, México
| |
Collapse
|
16
|
El Najjar N, Kaimer C, Rösch T, Graumann PL. Requirements for Septal Localization and Chromosome Segregation Activity of the DNA Translocase SftA from Bacillus subtilis. J Mol Microbiol Biotechnol 2017; 27:29-42. [PMID: 28110333 DOI: 10.1159/000450725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022] Open
Abstract
Bacillus subtilis possesses 2 DNA translocases that affect late stages of chromosome segregation: SftA separates nonsegregated DNA prior to septum closure, while SpoIIIE rescues septum-entrapped DNA. We provide evidence that SftA is associated with the division machinery via a stretch of 47 amino acids within its N-terminus, suggesting that SftA is recruited by protein-protein interactions with a component of the division machinery. SftA was also recruited to mid-cell in the absence of its first 20 amino acids, which are proposed to contain a membrane-binding motif. Cell fractionation experiments showed that SftA can be found in the cytosolic fraction, and to a minor degree in the membrane fraction, showing that it is a soluble protein in vivo. The expression of truncated SftA constructs led to a dominant sftA deletion phenotype, even at very low induction rates of the truncated proteins, indicating that the incorporation of nonfunctional monomers into SftA hexamers abolishes functionality. Mobility shift experiments and surface plasmon binding studies showed that SftA binds to DNA in a cooperative manner, and demonstrated low ATPase activity when binding to short nucleotides rather than to long stretches of DNA.
Collapse
Affiliation(s)
- Nina El Najjar
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
17
|
Veiga H, G Pinho M. Staphylococcus aureus requires at least one FtsK/SpoIIIE protein for correct chromosome segregation. Mol Microbiol 2016; 103:504-517. [PMID: 27886417 DOI: 10.1111/mmi.13572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Faithful coordination between bacterial cell division and chromosome segregation in rod-shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C-terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.
Collapse
Affiliation(s)
- Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
18
|
FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci U S A 2016; 113:7882-7. [PMID: 27317749 DOI: 10.1073/pnas.1523178113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In bacteria, the FtsK/Xer/dif (chromosome dimer resolution site) system is essential for faithful vertical genetic transmission, ensuring the resolution of chromosome dimers during their segregation to daughter cells. This system is also targeted by mobile genetic elements that integrate into chromosomal dif sites. A central question is thus how Xer/dif recombination is tuned to both act in chromosome segregation and stably maintain mobile elements. To explore this question, we focused on pathogenic Neisseria species harboring a genomic island in their dif sites. We show that the FtsK DNA translocase acts differentially at the recombination sites flanking the genomic island. It stops at one Xer/dif complex, activating recombination, but it does not stop on the other site, thus dismantling it. FtsK translocation thus permits cis discrimination between an endogenous and an imported Xer/dif recombination complex.
Collapse
|