1
|
MacLeod J, Abdelrahim M, Painter S, Maddula R, Steward A, Hamid A, Cheng RK, Zaha V, Addison D, Bauer B, Brown SA. Ten step academic-industry digital health collaboration methodology: A case-based guide for digital health research teams with the example of cardio-oncology. Front Cardiovasc Med 2022; 9:982059. [PMID: 36247469 PMCID: PMC9562627 DOI: 10.3389/fcvm.2022.982059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- James MacLeod
- Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Sabrina Painter
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | - Austin Steward
- Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Richard K. Cheng
- Division of Cardiovascular Medicine, University of Washington, Seattle, WA, United States
| | - Vlad Zaha
- Cardiology Division, University of Texas Southwestern, Dallas, TX, United States
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States
| | - Brenton Bauer
- COR Healthcare Associates, Torrance Memorial Medical Center, Torrance, CA, United States
| | - Sherry-Ann Brown
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Sherry-Ann Brown
| |
Collapse
|
2
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
3
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
4
|
Goh WJ, Tan SX, Pastorin G, Ho PCL, Hu J, Lim SH. 3D printing of four-in-one oral polypill with multiple release profiles for personalized delivery of caffeine and vitamin B analogues. Int J Pharm 2021; 598:120360. [PMID: 33548364 DOI: 10.1016/j.ijpharm.2021.120360] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Personalized supplementation has found recent momentum with an estimated global market size of USD 1.6 billion in 2019 and an expected CAGR of 8.5% between 2020 and 2028. Alongside this rising trend, a simple, accurate, inexpensive and flexible method to produce personalized dosage forms of a wide variety of supplements would be beneficial to both the industry players and individual consumers. Here, we present a 3D printing method to fabricate a four-in-one oral polypill with multiple release profiles for personalized delivery of caffeine and vitamin B analogues. The 3D printable formulations were fabricated and optimized from existing FDA GRAS excipients based on their viscosity, shear thinning properties, recovery of paste and mechanical strength. In the polypill, vitamin B analogues and caffeine were used as the model dietary ingredients. We performed a standard 2 stage USP in vitro dissolution test of the polypill, and demonstrated that vitamin B1, B3 and B6 could be immediately released within 30 min, while caffeine could be slowly released over a period of 4 h. This demonstrated the ability dietary supplement containing different ingredients with varying release profiles, all within a single polypill. Throughout the formulation and 3D printing process, there were no detectable changes to the dietary ingredients nor any interactions with the excipients. This method serves as an intriguing complement to traditional manufacturing of oral tablets, especially when flexibility in design, dose, volume and release profiles of each dietary ingredient is required, as exemplified in personalized supplementation.
Collapse
Affiliation(s)
- Wei Jiang Goh
- NUS Graduate School for Integrative Sciences and Engineering, University Hall, Tan Chin Tuan Wing Level 04, #04-02, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Craft Health Pte Ltd., 21 Bukit Batok Crescent, #10-75, WCEGA Tower, Singapore 658065, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Si Xuan Tan
- Craft Health Pte Ltd., 21 Bukit Batok Crescent, #10-75, WCEGA Tower, Singapore 658065, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Chi Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jun Hu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Seng Han Lim
- Craft Health Pte Ltd., 21 Bukit Batok Crescent, #10-75, WCEGA Tower, Singapore 658065, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Barrea L, Annunziata G, Bordoni L, Muscogiuri G, Colao A, Savastano S. Nutrigenetics-personalized nutrition in obesity and cardiovascular diseases. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:1-13. [PMID: 32714508 PMCID: PMC7371677 DOI: 10.1038/s41367-020-0014-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological data support the view that both obesity and cardiovascular diseases (CVD) account for a high proportion of total morbidity and mortality in adults throughout the world. Obesity and CVD have complex interplay mechanisms of genetic and environmental factors, including diet. Nutrition is an environmental factor and it has a predominant and recognizable role in health management and in the prevention of obesity and obesity-related diseases, including CVD. However, there is a marked variation in CVD in patients with obesity and the same dietary pattern. The different genetic polymorphisms could explain this variation, which leads to the emergence of the concept of nutrigenetics. Nutritional genomics or nutrigenetics is the science that studies and characterizes gene variants associated with differential response to specific nutrients and relating this variation to various diseases, such as CVD related to obesity. Thus, the personalized nutrition recommendations, based on the knowledge of an individual's genetic background, might improve the outcomes of a specific dietary intervention and represent a new dietary approach to improve health, reducing obesity and CVD. Given these premises, it is intuitive to suppose that the elucidation of diet and gene interactions could support more specific and effective dietary interventions in both obesity and CVD prevention through personalized nutrition based on nutrigenetics. This review aims to briefly summarize the role of the most important genes associated with obesity and CVD and to clarify the knowledge about the relation between nutrition and gene expression and the role of the main nutrition-related genes in obesity and CVD.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giuseppe Annunziata
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Laura Bordoni
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Macerata Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - on behalf of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Macerata Italy
| |
Collapse
|
6
|
Melocchi A, Uboldi M, Parietti F, Cerea M, Foppoli A, Palugan L, Gazzaniga A, Maroni A, Zema L. Lego-Inspired Capsular Devices for the Development of Personalized Dietary Supplements: Proof of Concept With Multimodal Release of Caffeine. J Pharm Sci 2020; 109:1990-1999. [PMID: 32112824 DOI: 10.1016/j.xphs.2020.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Dietary supplement companies have recently started to focus on the personalization of products and the improvement of the relevant performance. In this respect, a versatile, easy-to-handle capsular delivery platform with customizable content and release kinetics was here proposed and evaluated after filling with caffeine as a model dietary ingredient. In particular, capsular devices comprising 1 to 3 independent inner compartments were attained by Lego-inspired assembly of matching modular units with different wall compositions, manufactured by injection molding and fused deposition modeling 3D printing. Accordingly, one-, two- and three-pulse release profiles of the dietary ingredient were obtained from differently assembled devices following the breakup of the compartments occurring promptly (immediate-release), on pH change (delayed-release) or after tunable lag times (pulsatile-release). The latter release mode would enable the onset of the stimulating effect of caffeine at different times of the day after a single administration when convenient. The performance of each individual compartment only depended on the composition (i.e., promptly soluble, swellable/soluble or enteric soluble polymers) and thickness of its own wall, while it was not affected by the composition and number of joined modular units. Moreover, the delivery platform was extended to include an external gastroresistant shell enclosing previously assembled devices.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy; Multiply Labs, 1760 Cesar Chavez Street Unit D, 94124 San Francisco, California 94124
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Federico Parietti
- Multiply Labs, 1760 Cesar Chavez Street Unit D, 94124 San Francisco, California 94124
| | - Matteo Cerea
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Anastasia Foppoli
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Luca Palugan
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Alessandra Maroni
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy.
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| |
Collapse
|
7
|
Role of Personalized Nutrition in Chronic-Degenerative Diseases. Nutrients 2019; 11:nu11081707. [PMID: 31344895 PMCID: PMC6723746 DOI: 10.3390/nu11081707] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Human nutrition is a branch of medicine based on foods biochemical interactions with the human body. The phenotypic transition from health to disease status can be attributed to changes in genes and/or protein expression. For this reason, a new discipline has been developed called “-omic science”. In this review, we analyzed the role of “-omics sciences” (nutrigenetics, nutrigenomics, proteomics and metabolomics) in the health status and as possible therapeutic tool in chronic degenerative diseases. In particular, we focused on the role of nutrigenetics and the relationship between eating habits, changes in the DNA sequence and the onset of nutrition-related diseases. Moreover, we examined nutrigenomics and the effect of nutrients on gene expression. We perused the role of proteomics and metabolomics in personalized nutrition. In this scenario, we analyzed also how dysbiosis of gut microbiota can influence the onset and progression of chronic degenerative diseases. Moreover, nutrients influencing and regulating gene activity, both directly and indirectly, paves the way for personalized nutrition that plays a key role in the prevention and treatment of chronic degenerative diseases.
Collapse
|
8
|
Brown HD, Boonme K, Imrhan V, Juma S, Vijayagopal P, Prasad C. Should 'Omics' education be a part of allied health profession curricula? Genomics 2019; 112:169-173. [PMID: 30735794 DOI: 10.1016/j.ygeno.2019.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
Sequencing of human genome followed by monumental progress in omics sciences within last two decades has made personalized nutrition for better health is a reality for near future. The complexity of underlying science in making personalized nutrition recommendation has led to the need for training of health care providers. The International Society of Nutrigenetics/Nutrigenomics (ISNN) has mission to increase the understanding among both professionals and the general public of the role of genetic variation and nutrients in gene expression. To bring this mission to fruition, we need trained healthcare professionals ready to educate public. With this in mind, we have surveyed allied health students for their omics knowledge, desire to learn more and their perception of the need of omics education. The results show a need for training in omics in all allied health disciplines and desire of the students to learn more.
Collapse
Affiliation(s)
- Hadley D Brown
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | | | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA; Section of Endocrinology, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
9
|
Longitudinal analysis of biomarker data from a personalized nutrition platform in healthy subjects. Sci Rep 2018; 8:14685. [PMID: 30279436 PMCID: PMC6168584 DOI: 10.1038/s41598-018-33008-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
Abstract
The trend toward personalized approaches to health and medicine has resulted in a need to collect high-dimensional datasets on individuals from a wide variety of populations, in order to generate customized intervention strategies. However, it is not always clear whether insights derived from studies in patient populations or in controlled trial settings are transferable to individuals in the general population. To address this issue, a longitudinal analysis was conducted on blood biomarker data from 1032 generally healthy individuals who used an automated, web-based personalized nutrition and lifestyle platform. The study had two main aims: to analyze correlations between biomarkers for biological insights, and to characterize the effectiveness of the platform in improving biomarker levels. First, a biomarker correlation network was constructed to generate biological hypotheses that are relevant to researchers and, potentially, to users of personalized wellness tools. The correlation network revealed expected patterns, such as the established relationships between blood lipid levels, as well as novel insights, such as a connection between neutrophil and triglyceride concentrations that has been suggested as a relevant indicator of cardiovascular risk. Next, biomarker changes during platform use were assessed, showing a trend toward normalcy for most biomarkers in those participants whose values were out of the clinically normal range at baseline. Finally, associations were found between the selection of specific interventions and corresponding biomarker changes, suggesting directions for future study.
Collapse
|
10
|
Beckett EL, Jones PR, Veysey M, Lucock M. Nutrigenetics—Personalized Nutrition in the Genetic Age. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:1-8. [DOI: 10.14218/erhm.2017.00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Peña-Romero AC, Navas-Carrillo D, Marín F, Orenes-Piñero E. The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases. Crit Rev Food Sci Nutr 2017; 58:3030-3041. [PMID: 28678615 DOI: 10.1080/10408398.2017.1349731] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over time, the relationship between diet and health has aroused great interest, since nutrition can prevent and treat several diseases. It has been demonstrated that general recommendations on macronutrients and micronutrients do not affect to every individual in the same way because diet is an important environmental factor that interacts with genes. Thus, there is a growing necessity of improving a personalized nutrition to treat obesity and associated medical conditions, taking into account the interactions between diet, genes and health. Therefore, the knowledge of the interactions between the genome and nutrients at the molecular level, has led to the advent of nutritional genomics, which involves the sciences of nutrigenomics and nutrigenetics. In this review, we will comprehensively analyze the role of the most important genes associated with two interrelated chronic medical conditions, such as obesity and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Diana Navas-Carrillo
- b Department of Surgery, Hospital de la Vega Lorenzo Guirao , University of Murcia , Murcia , Spain
| | - Francisco Marín
- c Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca) , Universidad de Murcia , Murcia , Spain
| | - Esteban Orenes-Piñero
- a Department of Biochemistry and Molecular Biology-A , University of Murcia , Murcia , Spain
| |
Collapse
|
12
|
High Fat Diets Sex-Specifically Affect the Renal Transcriptome and Program Obesity, Kidney Injury, and Hypertension in the Offspring. Nutrients 2017; 9:nu9040357. [PMID: 28368364 PMCID: PMC5409696 DOI: 10.3390/nu9040357] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/12/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Obesity and related disorders have increased concurrently with an increased consumption of saturated fatty acids. We examined whether post-weaning high fat (HF) diet would exacerbate offspring vulnerability to maternal HF-induced programmed hypertension and kidney disease sex-specifically, with a focus on the kidney. Next, we aimed to elucidate the gene–diet interactions that contribute to maternal HF-induced renal programming using the next generation RNA sequencing (NGS) technology. Female Sprague-Dawley rats received either a normal diet (ND) or HF diet (D12331, Research Diets) for five weeks before the delivery. The offspring of both sexes were put on either the ND or HF diet from weaning to six months of age, resulting in four groups of each sex (maternal diet/post-weaning diet; n = 5–7/group): ND/ND, ND/HF, HF/ND, and HF/HF. Post-weaning HF diet increased bodyweights of both ND/HF and HF/HF animals from three to six months only in males. Post-weaning HF diet increased systolic blood pressure in male and female offspring, irrespective of whether they were exposed to maternal HF or not. Male HF/HF offspring showed greater degrees of glomerular and tubular injury compared to the ND/ND group. Our NGS data showed that maternal HF diet significantly altered renal transcriptome with female offspring being more HF-sensitive. HF diet induced hypertension and renal injury are associated with oxidative stress, activation of renin-angiotensin system, and dysregulated sodium transporters and circadian clock. Post-weaning HF diet sex-specifically exacerbates the development of obesity, kidney injury, but not hypertension programmed by maternal HF intake. Better understanding of the sex-dependent mechanisms that underlie HF-induced renal programming will help develop a novel personalized dietary intervention to prevent obesity and related disorders.
Collapse
|
13
|
Kohlmeier M, De Caterina R, Ferguson LR, Görman U, Allayee H, Prasad C, Kang JX, Nicoletti CF, Martinez JA. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition: Part 2 - Ethics, Challenges and Endeavors of Precision Nutrition. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:28-46. [PMID: 27286972 DOI: 10.1159/000446347] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutrigenetics considers the influence of individual genetic variation on differences in response to dietary components, nutrient requirements and predisposition to disease. Nutrigenomics involves the study of interactions between the genome and diet, including how nutrients affect the transcription and translation process plus subsequent proteomic and metabolomic changes, and also differences in response to dietary factors based on the individual genetic makeup. Personalized characteristics such as age, gender, physical activity, physiological state and social status, and special conditions such as pregnancy and risk of disease can inform dietary advice that more closely meets individual needs. Precision nutrition has a promising future in treating the individual according to their phenotype and genetic characteristics, aimed at both the treatment and prevention of disease. However, many aspects are still in progress and remain as challenges for the future of nutrition. The integration of the human genotype and microbiome needs to be better understood. Further advances in data interpretation tools are also necessary, so that information obtained through newer tests and technologies can be properly transferred to consumers. Indeed, precision nutrition will integrate genetic data with phenotypical, social, cultural and personal preferences and lifestyles matters to provide a more individual nutrition, but considering public health perspectives, where ethical, legal and policy aspects need to be defined and implemented.
Collapse
Affiliation(s)
- Martin Kohlmeier
- Department of Nutrition, School of Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, de Luis DA, Gil Á, Kang JX, Martin RL, Milagro FI, Nicoletti CF, Nonino CB, Ordovas JM, Parslow VR, Portillo MP, Santos JL, Serhan CN, Simopoulos AP, Velázquez-Arellano A, Zulet MA, Martinez JA. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. Lifestyle Genom 2016; 9:12-27. [DOI: 10.1159/000445350] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Hietaranta-Luoma HL, Åkerman K, Tahvonen R, Puolijoki H, Hopia A. Using Individual, ApoE Genotype-Based Dietary and Physical Activity Advice to Promote Healthy Lifestyles in Finland—Impacts on Cardiovascular Risk Markers. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojpm.2015.55024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|