1
|
The effect of chronic stress on behaviors, inflammation and lymphocyte subtypes in male and female rats. Behav Brain Res 2023; 439:114220. [PMID: 36414104 DOI: 10.1016/j.bbr.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Excessively released proinflammatory mediators from activated macrophages and lymphocytes may contribute to the etiology of depression. However, the relationship between lymphocytes and depression is not fully understood. Although women have higher depression risk than men, sex/gender differences in psychoneuroimmunological mechanisms are still unclear. To explore these two questions, chronic unpredictable mild stress (CUMS) was used to evaluate the changes in behaviors, inflammation and lymphocyte subtypes in adult male and female Wistar rats. Results show that CUMS increased anhedonia and anxiety-like behaviors, along with increased serum corticosterone, hippocampal pro-inflammatory factors, CD11b, IFN-γ, IL-6 and IL-17, but decreased CD4, CD25, CD4/CD8 ratio, GFAP, 5-hydroxytryptamine (5-HT) and NE concentrations, regardless of sex. There was no positive correlation between sucrose preference and blood CD4/CD8 ratio, but a positive correlation between sucrose preference and spleen CD25, sucrose preference and neurotransmitters (NE and 5-HT), spleen CD25 and serum TGF-β1/IL-6 ratio were found, regardless of sex. Females presented higher basal locomotion, blood CD4, CD4/CD8 ratio, serum corticosteroid and IL-6 concentrations, but lower hippocampal norepinephrine (NE) than males. Although CUMS didn't induce significant sex differences, females presented more changes in CD4 and CD8 lymphocytes than male rats. CUMS caused abnormalities in corticosteroid, lymphocytes, cytokines and neurotransmitters, which might be the precursors for inducing depression-like behaviors in both sexes.
Collapse
|
2
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Luo OJ, Lei W, Zhu G, Ren Z, Xu Y, Xiao C, Zhang H, Cai J, Luo Z, Gao L, Su J, Tang L, Guo W, Su H, Zhang ZJ, Fang EF, Ruan Y, Leng SX, Ju Z, Lou H, Gao J, Peng N, Chen J, Bao Z, Liu F, Chen G. Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty. NATURE AGING 2022; 2:348-364. [PMID: 37117750 DOI: 10.1038/s43587-022-00198-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Frailty is an intermediate status of the human aging process, associated with decompensated homeostasis and death. The immune phenotype of frailty and its underlying cellular and molecular processes remain poorly understood. We profiled 114,467 immune cells from cord blood, young adults and healthy and frail old adults using single-cell RNA and TCR sequencing. Here we show an age-dependent accumulation of transcriptome heterogeneity and variability in immune cells. Characteristic transcription factors were identified in given cell types of specific age groups. Trajectory analysis revealed cells from non-frail and frail old adults often fall into distinct paths. Numerous TCR clonotypes were shared among T-cell subtypes in old adults, indicating differential pluripotency and resilience capabilities of aged T cells. A frailty-specific monocyte subset was identified with exclusively high expression of long noncoding RNAs NEAT1 and MALAT1. Our study discovers human frailty-specific immune cell characteristics based on the comprehensive dimensions in the immune landscape of aging and frailty.
Collapse
|
4
|
Liu J, Dong P, Jia N, Wen X, Luo L, Wang S, Li J. The expression of intracellular cytokines of decidual natural killer cells in unexplained recurrent pregnancy loss. J Matern Fetal Neonatal Med 2020; 35:3209-3215. [PMID: 32907413 DOI: 10.1080/14767058.2020.1817369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This study aims to investigate the expression levels of TNF-α, IFN-γ, IL-4, and IL-10 in dNK cells and determine whether or not the MAPK signal pathway is involved in the regulation of cytokine secretion by dNK cells at the maternal-fetal interface. METHODS In this study, we collected decidua specimens from patients with apparently normal pregnant and unexplained recurrent pregnancy loss (URPL) and extracted dNK cells by enzymatic digestion. Then the expression of cytokines were analyzed by flow cytometry and Real-Time PCR respectively. RESULTS The secretions of both IFN-γ and TNF-α in dNK cells in URPL were significantly higher than those in normal pregnancy. Furthermore, p38/MAPK inhibitors can inhibit the secretion of four cytokines in normal pregnancy, while in URPL cases, p38/MAPK inhibitors only significantly inhibit the secretion of IL-4 and IFN-γ. ERK inhibitors had no effect on the expression of all four cytokines and JNK/MAPK inhibitors varied on different cytokines. CONCLUSION URPL is associated with a NK1 cytokine profile. MAPK signaling pathway is involved in the regulation of cytokine secretion by decidual NK cells at maternal-fetal interface.
Collapse
Affiliation(s)
- Jia Liu
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Dong
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningyi Jia
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xi Wen
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lanrong Luo
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Shijun Wang
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jia XB, Zhang Q, Xu L, Yao WJ, Wei L. Effect of Malus asiatica Nakai Leaf Flavonoids on the Prevention of Esophageal Cancer in C57BL/6J Mice by Regulating the IL-17 Signaling Pathway. Onco Targets Ther 2020; 13:6987-6996. [PMID: 32764989 PMCID: PMC7373410 DOI: 10.2147/ott.s261033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to observe the preventive effect of flavonoids extracted from Malus asiatica Nakai leaves (FMANL) on esophageal cancer in mice, especially the ability of FMANL to regulate the interleukin 17 (IL-17) signaling pathway during this process. Materials and Methods The C57BL/6J mice were treated with 4-nitroquinoline N-oxide (4NQO) to induce esophageal cancer, and the visceral tissue index and the serum and esophageal tissue indexes of mice were used to verify the effect of FMANL. Results The experimental results showed that FMANL can effectively control the changes in visceral tissue caused by esophageal cancer. FMANL could increase the cytokine levels of interleukin 10 (IL-10), monocyte chemotactic protein 1 (MCP-1) and decrease the cytokine levels of tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ), interleukin 6 (IL-6), and interleukin 12p70 (IL-12p70) in serum of mice with esophageal cancer. FMANL could also reduce CD3+, CD4+, and CD8+ and enhance CD19+ mouse peripheral blood lymphocytes. The results of qPCR and Western blot analysis showed that FMANL could down-regulate the mRNA and protein expression levels of IL-17, interleukin 23 (IL-23), interleukin 1 beta (IL-1β), chemokine (C-X-C) ligand 1 (CXCL1), chemokine (C-X-C) ligand 2 (CXCL2), S100 calcium-binding protein A8 (S100A8), S100 calcium-binding protein A9 (S100A9), matrix metalloprotein 9 (MMP-9), and matrix metalloprotein 13 (MMP-1) in mice with esophageal cancer. High-performance liquid chromatography (HPLC) detection showed that FMANL contained 10 chemicals, including rutin, hyperoside, isoquercitrin, dihydroquercetin, quercitrin, hesperidin, myricetin, baicalin, neohesperidin dihydrochalcone, and quercetin. Conclusion It could be concluded that FMANL can effectively prevent experimentally induced esophageal cancer in mice, and its effects might be obtained from 10 compounds present in FMANL.
Collapse
Affiliation(s)
- Xiang-Bo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Wen-Jian Yao
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, People's Republic of China
| |
Collapse
|
6
|
Qin A, Zhong T, Zou H, Wan X, Yao B, Zheng X, Yin D. Critical role of Tim-3 mediated autophagy in chronic stress induced immunosuppression. Cell Biosci 2019; 9:13. [PMID: 30680089 PMCID: PMC6341633 DOI: 10.1186/s13578-019-0275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
Background Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. Results We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. Conclusion Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.
Collapse
Affiliation(s)
- Anna Qin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Ting Zhong
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Huajiao Zou
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xiaoya Wan
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Bifeng Yao
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Xinbin Zheng
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China
| | - Deling Yin
- 1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 Hunan China.,2Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| |
Collapse
|
7
|
Abstract
In the present study, we aimed to explore the time course pathological changes after burn injury. The time course microarray data of burn injury from the Gene Expression Omnibus (GEO) was further analyzed through bioinformatics analysis. The differential expression genes (DEGs) were identified in the early-stage vs. control groups, middle-stage vs. control groups, and early-stage vs. middle-stage groups after burn injury, followed by pathway enrichment analysis. Gene modules associated with burn injury progression were identified through weighted gene co-expression network analysis (WGCNA), and hub genes were identified via network topology analysis. There were a total of 745 DEGs in the early vs. control group, 1104 DEGs in mid vs. control, and 61 DEGs in early vs. mid group. The significant pathways enriched by DEGs in the middle stage were also enriched by DEGs in the early stage. Immunodeficiency was a significant pathway specific for the DEGs in the early stage. There were 19 overlapped genes, such as myeloperoxidase, transcobalamin, and interferon-induced protein with tetratricopeptide repeats 1, among DEGs in early vs. control, middle vs. control, and early vs. middle groups. WGCNA identified three gene modules that were significantly associated with burn injury progression. Furthermore, we identified several gene modules and biological processes that might be associated with burn injury progression, and such results may be beneficial in understanding the underlying mechanisms and developing novel drugs.
Collapse
|
8
|
Abstract
Medical yoga is defined as the use of yoga practices for the prevention and treatment of medical conditions. Beyond the physical elements of yoga, which are important and effective for strengthening the body, medical yoga also incorporates appropriate breathing techniques, mindfulness, and meditation in order to achieve the maximum benefits. Multiple studies have shown that yoga can positively impact the body in many ways, including helping to regulate blood glucose levels, improve musculoskeletal ailments and keeping the cardiovascular system in tune. It also has been shown to have important psychological benefits, as the practice of yoga can help to increase mental energy and positive feelings, and decrease negative feelings of aggressiveness, depression and anxiety.
Collapse
|
9
|
Li JK, Nie L, Zhao YP, Zhang YQ, Wang X, Wang SS, Liu Y, Zhao H, Cheng L. IL-17 mediates inflammatory reactions via p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner in human nucleus pulposus cells. J Transl Med 2016; 14:77. [PMID: 26988982 PMCID: PMC4794827 DOI: 10.1186/s12967-016-0833-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low back pain and sciatica caused by intervertebral disc (IVD) disease are associated with inflammatory responses. The cytokine interleukin 17 (IL-17) is elevated in herniated and degenerated IVD tissues and acts as a regulator of disc inflammation. The objective of this study was to investigate the involvement of IL-17A in IVD inflammatory response and to explore the mechanisms underlying this response. METHODS Cells were isolated from nucleus pulposus (NP) tissues collected from patients undergoing surgeries for IVD degeneration. The concentrations of COX2 and PGE2, as well as of select proteins involved in the mitogen-activated protein kinase (MAPK)/activating protein-1 (AP-1) pathway, were quantified in NP cells after exposure to IL-17 with or without pretreatment with MAPK or AP-1 inhibitors. RESULTS Our results showed that IL-17A increased COX2 expression and PGE2 production via the activation of MAPKs, including p38 kinase and Jun N-terminal kinase (JNK). Moreover, IL-17A-induced COX2 and PGE2 production was shown to rely on p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner. CONCLUSION In summary, our results indicate that IL-17A enhances COX2 expression and PGE2 production via the p38/c-Fos and JNK/c-Jun signalling pathways in NP cells to mediate IVD inflammation.
Collapse
Affiliation(s)
- Jing-kun Li
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Lin Nie
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Yun-peng Zhao
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Yuan-qiang Zhang
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Xiaoqing Wang
- />Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai, 200011 People’s Republic of China
| | - Shuai-shuai Wang
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Yi Liu
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Hua Zhao
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
| | - Lei Cheng
- />Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, 250012 Shandong People’s Republic of China
- />Qilu Hospital Shandong University, No.107, Wen Hua Xi Road, Jinan, 250012 Shandong People’s Republic of China
| |
Collapse
|