1
|
Rabi LT, Valente DZ, de Souza Teixeira E, Peres KC, de Oliveira Almeida M, Bufalo NE, Ward LS. Potential new cancer biomarkers revealed by quantum chemistry associated with bioinformatics in the study of selectin polymorphisms. Heliyon 2024; 10:e28830. [PMID: 38586333 PMCID: PMC10998122 DOI: 10.1016/j.heliyon.2024.e28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.
Collapse
Affiliation(s)
- Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- .Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - Davi Zanoni Valente
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Elisangela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
| | | | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| |
Collapse
|
2
|
Yu M, Xiao G, Han L, Peng L, Wang H, He S, Lyu M, Zhu Y. QiShen YiQi and its components attenuate acute thromboembolic stroke and carotid thrombosis by inhibition of CD62P/PSGL-1-mediated platelet-leukocyte aggregate formation. Biomed Pharmacother 2023; 160:114323. [PMID: 36738500 DOI: 10.1016/j.biopha.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND QiShen YiQi (QSYQ) dropping pill, a component-based Chinese medicine consisting of benefiting Qi (YQ) and activating blood (HX) components, has been reported to exert a beneficial effect on cerebral ischemia-induced stroke. However, its efficacy and pharmacological mechanism on acute thromboembolic stroke is not clear. PURPOSE This study is to explore the preventative effect and pharmacological mechanism of QSYQ and its YQ/HX components on the formation of platelet-leukocyte aggregation (PLA) in acute thromboembolic stroke. STUDY DESIGN AND METHODS In vivo thromboembolic stroke model and FeCl3-induced carotid arterial occlusion models were used. Immunohistochemistry, Western blot, RT-qPCR, and flow cytometry experiments were performed to reveal the pharmacological mechanisms of QSYQ and its YQ/HX components. RESULTS In thromboembolic stroke rats, QSYQ significantly attenuated infarct area, improved neurological recovery, reduced PLA formation, and inhibited P-selection (CD62P)/ P-selectin glycoprotein ligand-1 (PSGL-1) expressions. The YQ component preferentially down-regulated PSGL-1 expression in leukocyte, while the HX component preferentially down-regulated CD62P expression in platelet. In carotid arterial thrombosis mice, QSYQ and its YQ/HX components inhibited thrombus formation, prolonged vessel occlusion time, reduced circulating leukocytes and P-selectin expression. PLA formation and platelet/leukocyte adhesion to endothelial cell were also inhibited by QSYQ and its YQ/HX components in vitro. CONCLUSION QSYQ and YQ/HX components attenuated thromboembolic stroke and carotid thrombosis by decreasing PLA formation via inhibiting CD62P/PSGL-1 expressions. This study shed a new light on the prevention of thromboembolic stroke.
Collapse
Affiliation(s)
- Mingxing Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Linhong Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Li Peng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Huanyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| |
Collapse
|
3
|
Differential Regulation of the Immune System in Peripheral Blood Following Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2747043. [PMID: 35722467 PMCID: PMC9200570 DOI: 10.1155/2022/2747043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Method 108 IS samples and 47 matched controls were obtained from the GEO database. Immune-related genes (IRGs) and their associated drugs were collected from the ImmPort and PharmGBK databases, respectively. Random forest (RF) regression and least absolute shrinkage and selection operator (LASSO) logistic regression were applied to identify immune-related genetic biomarkers (IRGBs) of IS, and accuracy was verified using neural network models. Finally, proportion changes of various immune cells in peripheral blood of IS patients were evaluated using CIBERSORT and xCell and correlation analyses were performed between IRGBs and differentially distributed immune cells. Results A total of 537 genes were differentially expressed between IS and control samples. Four immune-related differential expressed genes identified by regression analysis presented strong predictive power (AUC = 0.909) which we suggeseted them as immune-related genetic biomarkers (IRGBs). We also demonstrated six immune-related genes targeted by known drugs. In addition, post-IS immune system presented an increase in the proportion of innate immune cells and a decrease in adaptive immune cells in the peripheral circulation, and IRGBs showing significance were associated with this process. Conclusion The study identified CARD11, ICAM2, VIM, and CD19 as immune-related genetic biomarkers of IS. Six immune-related DEGs targeted by known drugs were found and provide new candidate drug targets for modulating the post-IS immune system. The innate immune cells and adaptive immune cells are diversified in the post-IS immune system, and IRGBs might play important role during this process.
Collapse
|
4
|
Yang J, Hao J, Lin Y, Guo Y, Liao K, Yang M, Cheng H, Yang M, Chen K. Profile and Functional Prediction of Plasma Exosome-Derived CircRNAs From Acute Ischemic Stroke Patients. Front Genet 2022; 13:810974. [PMID: 35360855 PMCID: PMC8963851 DOI: 10.3389/fgene.2022.810974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is one of the major causes of death and long-term disability, of which acute ischemic stroke (AIS) is the most common type. Although circular RNA (circRNA) expression profiles of AIS patients have been reported to be significantly altered in blood and peripheral blood mononuclear cells, the role of exosome-containing circRNAs after AIS is still unknown. Plasma exosomes from 10 AIS patients and 10 controls were isolated, and through microarray and bioinformatics analysis, the profile and putative function of circRNAs in the plasma exosomes were studied. A total of 198 circRNAs were differentially quantified (|log2 fold change| ≥ 1.00, p < 0.05) between AIS patients and controls. The levels of 12 candidate circRNAs were verified by qRT-PCR, and the quantities of 10 of these circRNAs were consistent with the data of microarray. The functions of host genes of differentially quantified circRNAs, including RNA and protein process, focal adhesion, and leukocyte transendothelial migration, were associated with the development of AIS. As a miRNA sponge, differentially quantified circRNAs had the potential to regulate pathways related to AIS, like PI3K-Akt, AMPK, and chemokine pathways. Of 198 differentially quantified circRNAs, 96 circRNAs possessing a strong translational ability could affect cellular structure and activity, like focal adhesion, tight junction, and endocytosis. Most differentially quantified circRNAs were predicted to bind to EIF4A3 and AGO2—two RNA-binding proteins (RBPs)—and to play a role in AIS. Moreover, four of ten circRNAs with verified levels by qRT-PCR (hsa_circ_0112036, hsa_circ_0066867, hsa_circ_0093708, and hsa_circ_0041685) were predicted to participate in processes of AIS, including PI3K-Akt, AMPK, and chemokine pathways as well as endocytosis, and to be potentially useful as diagnostic biomarkers for AIS. In conclusion, plasma exosome-derived circRNAs were significantly differentially quantified between AIS patients and controls and participated in the occurrence and progression of AIS by sponging miRNA/RBPs or translating into proteins, indicating that circRNAs from plasma exosomes could be crucial molecules in the pathogenesis of AIS and promising candidates as diagnostic biomarkers and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yapeng Lin
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yijia Guo
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Ke Liao
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hang Cheng
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, China
- *Correspondence: Kejie Chen,
| |
Collapse
|
5
|
Nashaat HAH, Abdelhamid AEDS, Ahmed AS, Hosny AO, Saad MA, Samahy ME, Hassan AM. Evaluation of platelets activity and reactivity as risk factors for acute ischemic non-embolic stroke in young adults. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ischemic stroke (IS) constitutes a relevant health concern recently in younger population causing permanent cognitive and function-limiting disability and ranks as the 3rd cause of death in Egypt after cardiac and hepatic diseases. Platelet activation has a crucial mechanism in arterial thrombogenesis, thus in pathophysiology of IS. Surface expression of P-selectin (CD62P) reflects platelet activation and measured by flowcytometry. The purpose of the study is to evaluate whether platelet activity and reactivity are considered risk factors for IS so more restrict antiplatelet protocols could be implemented for management and recurrence prevention.
Results
Study population was 60 IS patients and 60 apparently healthy age and gender-matched controls. Patients were subdivided into 37 patients without classical risk factors, aged 46.1 ± 8.2, and 23 patients with > 1 vascular risk factors, aged 52 ± 9.9. The percentage of platelets expressing CD62P reflecting ex vivo baseline activity was significantly higher in stroke patients to controls (p = 0.001), also platelet reactivity (CD62P expression after ADP provocation) was statistically significantly elevated in patients than in controls (p < 0.0001) and was significantly higher in IS patients with vascular risk factors compared to patients without risk factors (p = 0.02).
Conclusion
Both baseline platelet activity and reactivity were significantly higher in IS patients, and were also higher in IS patients with other vascular risk factors than in cryptogenic stroke and considered risk factors for IS.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW In this review, we will describe how the combined ability of platelets and neutrophils to interact with each other drives ischemic stroke brain injury. RECENT FINDINGS Neutrophils are one of the first cells to respond during ischemic stroke. Although animals stroke models have indicated targeting neutrophils improves outcomes, clinical trials have failed to yield successful strategies. Platelets play a critical role in recruiting neutrophils to sites of injury by acting as a bridge to the injured endothelium. After initial platelet adhesion, neutrophils can rapidly bind platelets through P-selectin and glycoprotein Ibα. In addition, recent data implicated platelet phosphatidylserine as a novel key regulator of platelet-neutrophil interactions in the setting of ischemic stroke. Inhibition of procoagulant platelets decreases circulating platelet-neutrophil aggregates and thereby reduces infarct size. Platelet binding alters neutrophil function, which contributes to the injury associated with ischemic stroke. This includes inducing the release of neutrophil extracellular traps, which are neurotoxic and pro-thrombotic, leading to impaired stroke outcomes. SUMMARY Platelet-neutrophil interactions significantly contribute to the pathophysiology of ischemic stroke brain injury. Better understanding the mechanisms behind their formation and the downstream consequences of their interactions will lead to improved therapies for stroke patients.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - John L Rustad
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
7
|
Liu CD, Liu NN, Zhang S, Ma GD, Yang HG, Kong LL, Du GH. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol Sin 2021; 42:370-381. [PMID: 33303991 PMCID: PMC8027612 DOI: 10.1038/s41401-020-00568-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Stroke is an acute cerebrovascular disease caused by ruptured or blocked blood vessels. For the prevention of ischemic stroke, the coagulation state of blood and cerebrovascular protection should be considered. Our previous study has shown that salvianolic acid A (SAA), which is a water-soluble component from the root of Salvia Miltiorrhiza Bge, prevents thrombosis with a mild inhibitory effect on platelet aggregation. In this study we investigated the preventive effects of SAA on cerebrovascular endothelial injury caused by ischemia in vivo and oxygen-glucose deprivation (OGD) in vitro, and explored the underlying mechanisms. An autologous thrombus stroke model was established in SD rats by electrocoagulation. SAA (10 mg/kg) was orally administered twice a day for 5 days before the operation. The rats were sacrificed at 24 h after the operation. We showed that pretreatment with SAA significantly improved the neurological deficits, intracerebral hemorrhage, BBB disruption, and vascular endothelial dysfunction as compared with model group. In human brain microvascular endothelial cells (HBMECs), pretreatment with SAA (10 μM) significantly inhibited OGD-induced cell viability reduction and degradation of tight junction proteins (ZO-1, occludin, claudin-5). Furthermore, we found that SAA inhibited the upregulation of Src signaling pathway in vivo and vitro and reversed the increased expression of matrix metalloproteinases (MMPs) after ischemic stroke. In conclusion, our results suggest that SAA protects cerebrovascular endothelial cells against ischemia and OGD injury via suppressing Src signaling pathway. These findings show that pretreatment with SAA is a potential therapeutic strategy for the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Cheng-di Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nan-Nan Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hai-Guang Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Lei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
8
|
Pletsch-Borba L, Grafetstätter M, Hüsing A, Johnson T, González Maldonado S, Groß ML, Kloss M, Hoffmeister M, Bugert P, Kaaks R, Kühn T. Vascular injury biomarkers and stroke risk. Neurology 2020; 94:e2337-e2345. [DOI: 10.1212/wnl.0000000000009391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023] Open
Abstract
ObjectiveBecause little is known about associations between biomarkers of vascular injury and stroke risk, we evaluated associations between plasma concentrations of 6 novel biomarkers of vascular injury and stroke risk in a population-based study.MethodsA case–cohort subset of EPIC-Heidelberg (European Prospective Investigation for Cancer and Nutrition–Heidelberg) including incident stroke cases (n = 335) and a random subcohort (n = 2,418) was selected. Concentrations of intercellular adhesion molecule 3 (ICAM3), soluble E-selectin and P-selectin, soluble thrombomodulin (sTM), thrombopoietin, and glycoprotein IIb/IIIa were measured in baseline plasma samples. Weighted Cox regression analyses were used to assess associations between biomarker levels and stroke risk.ResultsMedian follow-up in the subcohort and among cases was 9.8 (range, 0.1–12.5) years and 6.2 (range, 0.01–12.1) years, respectively. ICAM3 levels were associated with increased risk of incident stroke after multivariable adjustment (hazard ratio, highest vs lowest quartile: 1.64 [95% confidence interval, 1.15–2.32]; plinear trend < 0.001). This association was more apparent for ischemic (1.65 [1.12–2.45]; plinear trend < 0.01) than for hemorrhagic stroke (1.29 [0.60–2.78]; plinear trend = 0.3). We further observed a borderline significant trend for a positive association between sTM and overall stroke risk (1.47 [0.99–2.19]; plinear trend = 0.05).ConclusionsIn this population-based study, circulating levels of ICAM3, an adhesion molecule shed by leukocytes, were associated with increased risk of incident stroke. Further mechanistic studies are needed to elucidate the pathophysiology underlying this association.Classification of evidenceThis study provides Class II evidence that plasma levels of ICAM3 are associated with increased stroke risk.
Collapse
|
9
|
Denorme F, Manne BK, Portier I, Eustes AS, Kosaka Y, Kile BT, Rondina MT, Campbell RA. Platelet necrosis mediates ischemic stroke outcome in mice. Blood 2020; 135:429-440. [PMID: 31800959 PMCID: PMC7005363 DOI: 10.1182/blood.2019002124] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Dysregulated platelet functions contribute to the development and progression of ischemic stroke. Utilizing mice with a platelet-specific deletion of cyclophilin D (CypD), a mediator of necrosis, we found that platelet necrosis regulates tissue damage and outcomes during ischemic stroke in vivo. Mice with loss of CypD in platelets (CypDplt-/-mice) exhibited significantly enhanced cerebral blood flow, improved neurological and motor functions, and reduced ischemic stroke infarct volume after cerebral ischemia-reperfusion injury. These effects were attributable, at least in part, to platelet-neutrophil interactions. Twenty-four hours after stroke, significantly more circulating platelet-neutrophil aggregates (PNAs) were found in CypDplt+/+ mice. Underscoring the role of platelet necrosis in PNA formation, we observed a significant number of phosphatidylserine (PS)+ platelets in PNAs in CypDplt+/+ mice. In contrast, significantly fewer platelets in PNAs were PS+ in CypDplt-/- counterparts. Accordingly, mice with CypD-deficient platelets had fewer neutrophils and PNAs recruited to their brain following stroke relative to wild-type counterparts. Neutrophil depletion in wild-type mice conferred protection from ischemic stroke to a similar degree as observed in mice with CypD-deficient platelets. Neutrophil depletion in CypDplt-/- mice did not further reduce infarct size. Transmission electron microscopy of ex vivo-formed PNAs revealed a propensity of necrotic platelets to interact with neutrophils. These results suggest that necrotic platelets interact with neutrophils to exacerbate brain injury during ischemic stroke. Because inhibiting platelet necrosis does not compromise hemostasis, targeting platelet CypD may be a potential therapeutic strategy to limit brain damage following ischemic stroke.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Belgium
| | | | - Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Alicia S Eustes
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
- George E. Wahlen Veterans Affairs Medical Centers Department of Internal Medicine and Geriatric Research Education and Clinical Center, Salt Lake City, UT; and
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Sadeghi F, Kovács S, Zsóri KS, Csiki Z, Bereczky Z, Shemirani AH. Platelet count and mean volume in acute stroke: a systematic review and meta-analysis. Platelets 2019; 31:731-739. [PMID: 31657263 DOI: 10.1080/09537104.2019.1680826] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes of mean platelet volume (MPV) and platelet count (PC) could be a marker or a predictor of acute stroke (AS). We conducted a systematic review and meta-analysis of the published literature on the reporting of MPV and PC in AS. Studies were included in accordance with Patient Population or Problem, Intervention, Comparison, Outcomes, and Setting framework. The PRISMA strategy was used to report findings. Risk of bias was assessed with the Newcastle-Ottawa Scale. We included 34 eligible articles retrieved from the literature. PC was significantly lower in AS patients [standardized mean difference (SMD) = - 0.30, (95% CI: - 0.49 to - 0.11), N = 2492, P = .002] compared with controls (N = 3615). The MPV was significantly higher [SMD = 0.52 (95% CI: 0.28-0.76), N = 2739, P < .001] compared with controls (N = 3810). Subgroup analyses showed significantly lower PC in both ischemic stroke (Difference SMD = -0.18, 95% CI: -0.35-0.01) and hemorrhagic stroke (-0.94, -1.62 to -0.25), but only samples by citrate anticoagulant showed significantly lower result for patients compared to controls (-0.36, -0.68 to -0.04). Ischemic stroke patients had higher MPV (0.57, 0.31-0.83), and samples by Ethylenediaminetetraacetic acid (EDTA) anticoagulant showed significantly higher result for patients compared to controls (0.86, 0.55-1.17). PC and MPV appeared to be significantly different between patients with AS and control populations. MPV was significantly higher in ischemic stroke and PC was significantly lower in both ischemic and hemorrhagic strokes. These characteristics might be related to AS and associated with it. It is advisable to pay attention to elapsed time between phlebotomy and hematology analysis, anticoagulant and hemocytometer types in AS. SYSTEMATIC REVIEW REGISTRATION This meta-analysis is registered on the International Prospective Register of Systematic Reviews (PROSPERO) under registration number CRD42017067864 (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=67864).
Collapse
Affiliation(s)
- Farzaneh Sadeghi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Sándor Kovács
- Department of Research Methodology and Statistics, Institute of Sectorial Economics and Methodology, Faculty of Economics and Business, Debrecen University , Debrecen, Hungary
| | | | - Zoltán Csiki
- Department of Medicine, Debrecen University , Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Amir Houshang Shemirani
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen , Debrecen, Hungary.,Central Laboratory, Erzsébet hospital , Sátoraljaújhely, Hungary
| |
Collapse
|
11
|
A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 2019; 117:109078. [DOI: 10.1016/j.biopha.2019.109078] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
12
|
Jin R, Liu S, Wang M, Zhong W, Li G. Inhibition of CD147 Attenuates Stroke-Associated Pneumonia Through Modulating Lung Immune Response in Mice. Front Neurol 2019; 10:853. [PMID: 31447768 PMCID: PMC6692478 DOI: 10.3389/fneur.2019.00853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose: Acute ischemic stroke triggers a profound systemic and local immunodysfunction that increased the susceptibility to infections, especially stroke-associated pneumonia (SAP). Our previous study has shown that inhibition of CD147 ameliorates acute ischemic stroke, however, the role of CD147 in post-stroke lung infection has not been investigated. Methods: C57BL/6 mice were subjected to transient (60 min) middle cerebral artery occlusion, and treated with anti-CD147 antibody (αCD147). Lung histological changes, vascular permeability, and pulmonary edema were determined. Bacterial burden in the lung tissue and Broncho alveolar lavage fluid (BALF) were measured. Lung leukocyte infiltration, circulating platelet-leukocyte aggregates, cell type-specific IL-17A, and IFN-γ expression in the lung were detected by flow cytometry. Results: CD147 expression was markedly upregulated in the lung after stroke. αCD147 treatment significantly decreased the stroke-associated lung histological damages, bacterial load, vascular permeability and pulmonary edema. The protective effects by αCD147 treatment were associated with deceased lung inflammatory cell infiltration by reducing IL-17A expression in lung γδ T cells and attenuated bacterial load by enhancing IFN-γ expression in the lung NK1.1+ cells and CD4+ T cells. In addition, CD147 expression was also increased in the circulating platelets and leukocytes. Enhanced platelet-leukocyte aggregates following stroke was inhibited by αCD147 treatment. Conclusions: Inhibition of CD147 ameliorates aberrant lung inflammatory and immune response and reduces bacterial infection after stroke. CD147 might represent a novel and promising therapeutic target for post-stroke lung infection.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shan Liu
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Min Wang
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Wei Zhong
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Guohong Li
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
13
|
Cho KJ, Kim J, Jeon SH, Kim GW. Circulating Factors and Ultrasono-findings are Linked to Previous Atherosclerotic Burden and Recurrent Risk. Curr Pharm Des 2019; 25:1424-1429. [PMID: 31258062 PMCID: PMC7040516 DOI: 10.2174/1381612825666190620145845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
Abstract: Background: In the progression of atherosclerosis, platelet activation and the interaction of platelets with leukocytes play a crucial role in arterial thrombus formation and are associated with the pathophysiology of carotid and cerebrovascular disease (CVD), including ischemic stroke. With aged participants, we evaluated and followed up the change in circulating factor and platelet-leukocyte aggregate levels in participants with or without CVD history. This study investigated whether circulating factor changes and ultrasonographic characteristics link to CVD risk and other relating long-term outcomes. Materials and Methods: Two hundred fifteen participants who enrolled in the study were divided into two groups with CVD and without CVD history. We evaluated and analyzed the correlation between ultrasonography-based morphological characteristics and circulating factor-based functional changes in both groups. Results: There was no difference in p-selectin level between both groups. However, activated monocyte and platelet-monocyte aggregate levels were higher in patients with previous CVD than without previous CVD. Circulating factor and ultrasonographical characteristics were correlated in the group with CVD, whereas these factors were not correlated in the group without CVD. Conclusion: We found that circulating blood factor levels showed a different tendency in participants with and without CVD history. The results depict that atherosclerotic severity might depend on the history of CVD and progression of atherosclerosis. We suggest that the circulating factor levels, atherosclerotic severity, and history of CVD are considered in the observation of pathologic progression to manage the development of CVD risks and CVD relating outcomes.
Collapse
Affiliation(s)
- Kyoung J Cho
- Department of Life Science, College of Science and Engineering, Kyonggi University, Suwon-si, South Korea
| | - Jihye Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Soung H Jeon
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Gyung W Kim
- Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
14
|
Senchenkova EY, Ansari J, Becker F, Vital SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll JL, Dragoi AM, Qin CX, Ritchie RH, Sun H, Cuellar-Saenz HH, Rubinstein MR, Han YW, Orr AW, Perretti M, Granger DN, Gavins FNE. Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation. Circulation 2019; 140:319-335. [PMID: 31154815 PMCID: PMC6687438 DOI: 10.1161/circulationaha.118.039345] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. Methods: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1−/−) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye–induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. Results: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1−/− mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease αIIbβ3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5–13 mice/group or 7–10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (αIIbβ3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.
Collapse
Affiliation(s)
- Elena Y Senchenkova
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Junaid Ansari
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Felix Becker
- Department for General, Visceral, and Transplant Surgery, University Hospital Muenster, Germany (F.B., H.S.)
| | - Shantel A Vital
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Zaki Al-Yafeai
- Pathology and Translational Pathobiology (Z.A.-Y., A.W.O.)
| | | | - Rafal Pawlinski
- Department of Medicine, University North Carolina Chapel Hill (E.M.S., R.P.)
| | - Karen Y Stokes
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Jennifer L Carroll
- INLET (J.L.C., A.-M.D.).,Feist-Weiller Cancer Center (J.L.C., A.-M.D.), Louisiana State University Health Sciences Center-Shreveport
| | - Ana-Maria Dragoi
- INLET (J.L.C., A.-M.D.).,Feist-Weiller Cancer Center (J.L.C., A.-M.D.), Louisiana State University Health Sciences Center-Shreveport
| | - Cheng Xue Qin
- Heart Failure Pharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.X.Q., R.H.R.)
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.X.Q., R.H.R.)
| | - Hai Sun
- Neurosurgery (H.S., H.H.C.-Z.).,Department for General, Visceral, and Transplant Surgery, University Hospital Muenster, Germany (F.B., H.S.)
| | | | - Mara R Rubinstein
- Division of Periodontics, College of Dental Medicine (M.R.R., Y.W.H.), Columbia University, New York
| | - Yiping W Han
- Division of Periodontics, College of Dental Medicine (M.R.R., Y.W.H.), Columbia University, New York.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons (Y.W.H.), Columbia University, New York
| | - A Wayne Orr
- Pathology and Translational Pathobiology (Z.A.-Y., A.W.O.).,Cellular Biology and Anatomy (A.W.O.)
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, UK (M.P.)
| | - D Neil Granger
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Felicity N E Gavins
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.).,Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UK (F.N.E.G.)
| |
Collapse
|
15
|
Song J, Chen X, Lyu Y, Zhuang W, Zhang J, Gao L, Tong X. Sanhuang Xiexin decoction promotes good functional outcome in acute ischemic stroke. Brain Behav 2019; 9:e01185. [PMID: 30569662 PMCID: PMC6346639 DOI: 10.1002/brb3.1185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To explore the efficiency and safety of Sanhuang Xiexin decoction in the treatment of acute ischemic stroke (AIS) patients after endovascular intervention examination. METHODS In this prospective observational study, 121 AIS patients admitted in our hospital were enrolled from January 2012 to December 2015. They were randomly divided into two groups, 61 patients received Sanhuang Xiexin decoction + basic treatment (SX group) and 60 patients received basic treatment (control group). The prescription of Sanhuang Xiexin decoction was taken in the SX group, with one dose (100 ml), twice a day for 7 days orally. For all patients, blood samples were drawn on the first morning and sixth morning after endovascular intervention examination under fasting state for Fib (fibrinogen), PAgT (platelet aggregation test), CRP (C-reactive protein), and TMAO (trimethylamine oxide) tested. Estimate the changes in plasma Fib, PAgT, CRP, and TMAO levels and the syndrome of fire-heat scores. RESULTS The plasma Fib, PAgT, CRP, and TMAO levels in the SX group were significantly lower than those in the control group (PFib < 0.01, PPAgT < 0.01, PCRP = 0.02, PTMAO < 0.01). The syndrome of fire-heat scores in the SX group was significantly lower than that in the control group (p < 0.01). The incidences of ischemic cerebrovascular events within 3 and 6 months after endovascular intervention treatment in the SX group were lower than those in the control group (P3 month = 0.04, P6month = 0.03). CONCLUSIONS The prescription of Sanhuang Xiexin is efficient and safe in the treatment of AIS patients after endovascular intervention examination through reducing the inflammatory factors.
Collapse
Affiliation(s)
- Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Lyu
- Department of Anesthesiology, Yunnan Baoshan Anli Hospital, Shanghai, China
| | - Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Yang C, Fan F, Sawmiller D, Tan J, Wang Q, Xiang Y. C1q/TNF‐related protein 9: A novel therapeutic target in ischemic stroke? J Neurosci Res 2018; 97:128-136. [PMID: 30378715 DOI: 10.1002/jnr.24353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Cui Yang
- Department of Clinical MedicineChengdu Medical College Chengdu China
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Fan Fan
- Department of Clinical MedicineChengdu Medical College Chengdu China
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Darrell Sawmiller
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine University of South Florida Tampa FL
| | - Jun Tan
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine University of South Florida Tampa FL
| | - Qingsong Wang
- Department of Neurology Chengdu Military General Hospital Chengdu China
| | - Yang Xiang
- Department of Neurology Chengdu Military General Hospital Chengdu China
| |
Collapse
|
17
|
Jin L, Zhou J, Shi W, Xu L, Sheng J, Fan J, Yuan Y, Yuan H. Effects of six types of aspirin combination medications for treatment of acute cerebral infarction in China: A network meta-analysis. J Clin Pharm Ther 2018; 44:91-101. [DOI: 10.1111/jcpt.12763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/18/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Lairun Jin
- Department of Epidemiology and Biostatistics, School of Public Health; Wannan Medical College; Wuhu China
| | - Jun Zhou
- Department of Epidemiology and Biostatistics, School of Public Health; Wannan Medical College; Wuhu China
| | - Wei Shi
- Department of Epidemiology and Biostatistics, School of Public Health; Wannan Medical College; Wuhu China
| | - Liang Xu
- Department of Rheumatology; Affiliated Yijishan Hospital of Wannan Medical College; Wuhu China
| | - Jun Sheng
- Department of Rheumatology; Affiliated Yijishan Hospital of Wannan Medical College; Wuhu China
| | - Jingyi Fan
- Department of Epidemiology and Biostatistics, School of Public Health; Wannan Medical College; Wuhu China
| | - Yuting Yuan
- Department of Epidemiology and Biostatistics, School of Public Health; Wannan Medical College; Wuhu China
| | - Hui Yuan
- Department of Epidemiology and Biostatistics, School of Public Health; Wannan Medical College; Wuhu China
| |
Collapse
|
18
|
Xue Y, Yin P, Li G, Zhong D. Genome-wide Integration Study of Circulating miRNAs and Peripheral Whole-Blood mRNAs of Male Acute Ischemic Stroke Patients. Neuroscience 2018; 380:27-37. [PMID: 29653195 DOI: 10.1016/j.neuroscience.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 01/21/2023]
Abstract
Several circulating microRNAs (miRNAs) have been proved to serve as stable biomarkers in blood for acute ischemic stroke (AIS). However, the functions of these biomarkers remain elusive. By conducting the integration analysis of circulating miRNAs and peripheral whole-blood mRNAs using bioinformatics methods, we explored the biological role of these circulating markers in peripheral whole blood at the genome-wide level. Stroke-related circulating miRNA profile data (GSE86291) and peripheral whole-blood mRNA expression data (GSE16561) were collected from the Gene Expression Omnibus (GEO) datasets. We selected male patients to avoid any gender differences in stroke pathology. Male stroke-related miRNAs (M-miRNAs) and mRNAs (M-mRNAs) were detected using GEO2R. Nine M-miRNAs (five up- and four down-regulated) were applied to TargetScan to predict the possible target mRNAs. Next, we intersected these targets with the M-mRNAs (38 up- and three down-regulated) to obtain the male stroke-related overlapped mRNAs (Mo-mRNAs). Finally, we analyzed biological functions of Mo-mRNAs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and constructed networks among the Mo-mRNAs, overlapped M-miRNAs (Mo-miRNAs), and their functions. The Mo-mRNAs were enriched in functions such as platelet degranulation, immune response, and pathways associated with phagosome biology and Staphylococcus aureus infection. This study provides an integrated view of interactions among circulating miRNAs and peripheral whole-blood mRNAs involved in the pathophysiological processes of male AIS.
Collapse
Affiliation(s)
- Yang Xue
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - Pengqi Yin
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China.
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilong Jiang Province, PR China.
| |
Collapse
|
19
|
Chen C, Li T, Zhao Y, Qian Y, Li X, Dai X, Huang D, Pan T, Zhou L. Platelet glycoprotein receptor Ib blockade ameliorates experimental cerebral ischemia-reperfusion injury by strengthening the blood-brain barrier function and anti-thrombo-inflammatory property. Brain Behav Immun 2018; 69:255-263. [PMID: 29195783 DOI: 10.1016/j.bbi.2017.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Blood-brain barrier (BBB) disruption, thrombus formation and immune-mediated inflammation are important steps in the pathophysiology of cerebral ischemia-reperfusion injury but are still inaccessible to therapeutic interventions. Recent studies have provided increasing evidence that blocking of platelet glycoprotein (GP) receptor Ib might represent a novel target in treating acute ischemic stroke. This research was conducted to explore the therapeutic efficacy and potential mechanisms of GPIbα inhibitor (anfibatide) in a model of brain ischemia-reperfusion injury in mice. Male mice underwent 90 min of right middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Anfibatide (1, 2, 4 ug/kg) or tirofiban were administered intravenously 1 h after reperfusion. The results showed that anfibatide could significantly reduce infarct volumes, increase the number of intact neuronal cells and improve neurobehavioral function. Moreover, anfibatide could reduce post ischemic BBB damage by attenuating increased paracellular permeability in the ischemia hemisphere significantly. Stroke-induced increases in activity and protein expression of macrophage-1 antigen (MAC-1) and P-selectin were also reduced by anfibatide intervention. Finally, anfibatide exerted antithrombotic effects upon stroke by decreased the number of microthrombi formation. This is the first demonstration of anfibatide's efficacy in protecting the BBB integrity and decreasing neutrophil inflammation response mediated by MAC-1 besides microthrombus formation inhibition in the brain during reperfusion. Anfibatide, as a promising anti-thrombo-inflammation agent, could be beneficial for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Tingting Li
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China; Department of Pharmacy, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Yuchen Zhao
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Xiaoyi Li
- Zhaoke Pharmaceutical Co. Ltd, Hefei 230032, PR China
| | - Xiangrong Dai
- Zhaoke Pharmaceutical Co. Ltd, Hefei 230032, PR China
| | - Dake Huang
- Synthetic Laboratory of Basic Medicine College, Anhui Medical University, Hefei 230032, PR China
| | - Tianzhong Pan
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Lanlan Zhou
- Department of Pharmacology, School of Basic Medical Science, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
20
|
Davison GM, Nkambule BB, Mkandla Z, Hon GM, Kengne AP, Erasmus RT, Matsha TE. Platelet, monocyte and neutrophil activation and glucose tolerance in South African Mixed Ancestry individuals. Sci Rep 2017; 7:40329. [PMID: 28091589 PMCID: PMC5238515 DOI: 10.1038/srep40329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Platelet activation has been described in patients with chronic inflammation, however in type 2 diabetes mellitus it remains controversial. We compared levels of platelet leucocyte aggregates, monocyte and granulocyte activation across glucose tolerance statuses in mixed ancestry South Africans. Individuals (206) were recruited from Bellville-South, Cape Town, and included 66% with normal glucose tolerance, 18.7% pre-diabetes, 8.7% screen-detected diabetes and 6.3% known diabetes. Monocyte and neutrophil activation were measured by calculating the percentage of cells expressing CD142 and CD69 while platelet monocyte aggregates were defined as CD14++ CD42b+ events and platelet neutrophil aggregates as CD16++ CD42b+ events. The percentage of monocytes and neutrophils expressing CD69 and CD142 was significantly higher in known diabetes and prediabetes, but, lowest in screen-detected diabetes (both p ≤ 0.016). The pattern was similar for platelet monocyte and neutrophil aggregates (both p ≤ 0.003). In robust linear regressions adjusted for age and gender, known diabetes was significantly and positively associated with the percentage of monocytes expressing CD69 [beta 11.06 (p = 0.016)] and CD42b (PMAs) [19.51 (0.003)] as well as the percentage of neutrophils expressing CD69 [14.19 (<0.0001)] and CD42b [17.7 (0.001)]. We conclude that monitoring platelet activation in diagnosed diabetic patients may have a role in the management and risk stratification.
Collapse
Affiliation(s)
- Glenda M Davison
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Bongani B Nkambule
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Zibusiso Mkandla
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Gloudina M Hon
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Andre P Kengne
- NonCommunicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rajiv T Erasmus
- Department of Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and Stellenbosch University, Cape Town, South Africa
| | - Tandi E Matsha
- Department of Biomedical sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
21
|
Li RHL, Stern JA, Ho V, Tablin F, Harris SP. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3. J Vet Intern Med 2016; 30:1619-1629. [PMID: 27615120 PMCID: PMC5032873 DOI: 10.1111/jvim.14568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023] Open
Abstract
Background Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. Objective To determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. Animals Fourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild‐type cats without the A31P mutation. Methods Ex vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)‐induced P‐selectin expression was evaluated. ADP‐ and thrombin‐induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. Results Platelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58–48.55) to 58.90% (24.85–69.90)], in response to ADP. Clopidogrel treatment attenuated ADP‐induced P‐selectin expression and platelet aggregation. ADP‐ and PGE1‐treated platelets had a similar level of pVASP as PGE1‐treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46–35.50) to 11.30% (−7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Conclusion and Clinical Importance Clopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild‐type cats.
Collapse
Affiliation(s)
- R H L Li
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA.
| | - J A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - V Ho
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - F Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - S P Harris
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
22
|
Postula M, Janicki PK, Milanowski L, Pordzik J, Eyileten C, Karlinski M, Wylezol P, Solarska M, Czlonkowka A, Kurkowska-Jastrzebka I, Sugino S, Imamura Y, Mirowska-Guzel D. Association of frequent genetic variants in platelet activation pathway genes with large-vessel ischemic stroke in Polish population. Platelets 2016; 28:66-73. [DOI: 10.1080/09537104.2016.1203404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA, USA
| | - Piotr K. Janicki
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA, USA
| | - Lukasz Milanowski
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Michal Karlinski
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Pawel Wylezol
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Marta Solarska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Anna Czlonkowka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Shigekazu Sugino
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA, USA
| | - Yuka Imamura
- Genome Sciences Facility, Penn State University, College of Medicine, Hershey, PA, USA
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
23
|
Tao L, Changfu W, Linyun L, Bing M, Xiaohui H. Correlations of platelet-leukocyte aggregates with P-selectin S290N and P-selectin glycoprotein ligand-1 M62I genetic polymorphisms in patients with acute ischemic stroke. J Neurol Sci 2016; 367:95-100. [DOI: 10.1016/j.jns.2016.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
|
24
|
Vital SA, Becker F, Holloway PM, Russell J, Perretti M, Granger DN, Gavins FNE. Formyl-Peptide Receptor 2/3/Lipoxin A4 Receptor Regulates Neutrophil-Platelet Aggregation and Attenuates Cerebral Inflammation: Impact for Therapy in Cardiovascular Disease. Circulation 2016; 133:2169-79. [PMID: 27154726 PMCID: PMC4889496 DOI: 10.1161/circulationaha.115.020633] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Platelet activation at sites of vascular injury is essential for hemostasis, but it is also a major pathomechanism underlying ischemic injury. Because anti-inflammatory therapies limit thrombosis and antithrombotic therapies reduce vascular inflammation, we tested the therapeutic potential of 2 proresolving endogenous mediators, annexin A1 N-terminal derived peptide (AnxA1Ac2-26) and aspirin-triggered lipoxin A4 (15-epi-lipoxin A4), on the cerebral microcirculation after ischemia/reperfusion injury. Furthermore, we tested whether the lipoxin A4 receptor formyl-peptide receptor 2/3 (Fpr2/3; ortholog to human FPR2/lipoxin A4 receptor) evoked neuroprotective functions after cerebral ischemia/reperfusion injury. METHODS AND RESULTS Using intravital microscopy, we found that cerebral ischemia/reperfusion injury was accompanied by neutrophil and platelet activation and neutrophil-platelet aggregate formation within cerebral microvessels. Moreover, aspirin-triggered lipoxin A4 activation of neutrophil Fpr2/3 regulated neutrophil-platelet aggregate formation in the brain and inhibited the reactivity of the cerebral microvasculature. The same results were obtained with AnxA1Ac2-26 administration. Blocking Fpr2/lipoxin A4 receptor with the antagonist Boc2 reversed this effect, and treatments were ineffective in Fpr2/3 knockout mice, which displayed an exacerbated disease severity, evidenced by increased infarct area, blood-brain barrier dysfunction, increased neurological score, and elevated levels of cytokines. Furthermore, aspirin treatment significantly reduced cerebral leukocyte recruitment and increased endogenous levels of aspirin-triggered lipoxin A4, effects again mediated by Fpr2/3. CONCLUSION Fpr2/lipoxin A4 receptor is a therapeutic target for initiating endogenous proresolving, anti-inflammatory pathways after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shantel A Vital
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Felix Becker
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Paul M Holloway
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Janice Russell
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Mauro Perretti
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - D Neil Granger
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Felicity N E Gavins
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.).
| |
Collapse
|
25
|
Starossom SC, Veremeyko T, Yung AWY, Dukhinova M, Au C, Lau AY, Weiner HL, Ponomarev ED. Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation. Circ Res 2015; 117:779-92. [PMID: 26294656 DOI: 10.1161/circresaha.115.306847] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases, such as multiple sclerosis (MS), is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T-cell differentiation toward pathogenic T helper-1/T helper-17 phenotypes are not completely understood. OBJECTIVE We investigated the role of platelets in the modulation of CD4 T-cell functions in patients with MS and in mice with experimental autoimmune encephalitis, an animal model for MS. METHODS AND RESULTS We found that early in MS and experimental autoimmune encephalitis, platelets degranulated and produced soluble factors serotonin (5-hydroxytryptamine), platelet factor 4, and platelet-activating factor, which specifically stimulated differentiation of T cells toward pathogenic T helper-1, T helper-17, and interferon-γ/interleukin-17-producing CD4 T cells. At the later stages of MS and experimental autoimmune encephalitis, platelets became exhausted in their ability to produce proinflammatory factors and stimulate CD4 T cells but substantially increased their ability to form aggregates with CD4 T cells. Formation of platelet-CD4 T-cell aggregates involved the interaction of CD62P on activated platelets with adhesion molecule CD166 on activated CD4 T cells, contributing to downmodulation of CD4 T-cell activation, proliferation, and production of interferon-γ. Blocking of formation of platelet-CD4 T-cell aggregates during progression of experimental autoimmune encephalitis substantially enhanced proliferation of CD4 T cells in the central nervous system and the periphery leading to exacerbation of the disease. CONCLUSION Our study indicates differential roles for platelets in the regulation of functions of pathogenic CD4 T cells during initiation and progression of central nervous system autoimmune inflammation.
Collapse
Affiliation(s)
- Sarah C Starossom
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Tatyana Veremeyko
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Amanda W Y Yung
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Marina Dukhinova
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Cheryl Au
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Alexander Y Lau
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Howard L Weiner
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong
| | - Eugene D Ponomarev
- From the Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Boston, MA (S.C.S., H.L.W., E.D.P.); Institute for Medical Immunology and NeuroCure, Department of Experimental Neuroimmunology, Charité - Universitätsmedizin Berlin, Berlin, Germany (S.C.S.); and School of Biomedical Sciences, Faculty of Medicine (T.V., A.W.Y.Y., M.D., E.D.P.) and Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital (C.A., A.Y.L.), The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
26
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|