1
|
Oinonen L, Koskela J, Eräranta A, Tikkakoski A, Kähönen M, Niemelä O, Mustonen J, Pörsti I. Plasma total calcium concentration is associated with blood pressure and systemic vascular resistance in normotensive and never-treated hypertensive subjects. Blood Press 2019; 29:137-148. [PMID: 31790289 DOI: 10.1080/08037051.2019.1696180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: The underlying causes of primary hypertension are not fully understood. Evidence on the relation of plasma calcium concentration with blood pressure (BP) is inconsistent and relies largely on studies utilizing office BP measurements in populations using cardiovascular drugs. In many studies adjustment for confounders was not optimal. In this cross-sectional study we examined the association of plasma total calcium concentration with the haemodynamic determinants of blood pressure.Subjects and methods: Supine haemodynamics were recorded using pulse wave analysis, whole-body impedance cardiography, and heart rate variability analysis in 618 normotensive or never-treated hypertensive subjects (aged 19-72 years) without diabetes, cardiovascular or renal disease, or cardiovascular medications. Linear regression analysis was used to investigate factors associated with haemodynamic variables.Results: Mean age was 45.0 years, body mass index 26.8 kg/m2, seated office BP 141/89 mmHg, and 307 subjects (49.7%) were male. Mean values of routine blood and plasma chemistry analyses were within the reference limits of the tests except for low-density lipoprotein cholesterol (3.05 mmol/l). In the laboratory, mean supine radial BP was 131/75 mmHg, and both systolic and diastolic BP correlated directly with plasma total calcium concentration (r = 0.25 and r = 0.22, respectively, p < 0.001 for both). In regression analysis plasma total calcium concentration was an independent explanatory variable for radial and aortic systolic and diastolic BP, and systemic vascular resistance, but not for cardiac output, pulse wave velocity, or any of the heart rate variability parameters.Conclusion: Plasma total calcium concentration was directly associated with systolic and diastolic BP and systemic vascular resistance in normotensive or never-treated hypertensive subjects without comorbidities and cardiovascular medications. Higher plasma calcium concentration potentially plays a role in primary hypertension via an effect on vascular resistance.
Collapse
Affiliation(s)
- Lasse Oinonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenni Koskela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Tikkakoski
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Abstract
The mechanisms responsible for the increase in blood pressure response to high salt intake in salt-sensitive patients with essential hypertension are complex and only partially understood. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for such patients to retain salt and develop salt-dependent hypertension. The possible role of vasodilator and natriuretic agents, such as the prostaglandins, endothelium-derived relaxing factor, atrial natriuretic factor, and kinin-kallikrein system, requires further investigation. An association between salt sensitivity and a greater propensity to develop renal failure has been described in certain groups of hypertensive patients, such as blacks, the elderly, and those with diabetes mellitus. Salt-sensitive patients with essential hypertension manifest a deranged renal hemodynamic adaptation to a high dietary salt intake. During a low salt diet, salt-sensitive and salt-resistant patients have similar mean arterial pressure, glomerular filtration rate, effective renal plasma flow, and filtration fraction. On the other hand, during a high salt intake glomerular filtration rate does not change in either group, and effective renal blood flow increases in salt-resistant but decreases in salt-sensitive patients; filtration fraction and glomerular capillary pressure decrease in salt-resistant but increase in salt-sensitive patients. Salt-sensitive patients are also more likely than salt-resistant patients to manifest left ventricular hypertrophy, microalbuminuria, and metabolic abnormalities that may predispose them to cardiovascular diseases. In conclusion, salt sensitivity in hypertension is associated with substantial renal, hemodynamic, and metabolic abnormalities that may enhance the risk of cardiovascular and renal morbidity.
Collapse
Affiliation(s)
- V M Campese
- Department of Medicine, University of Southern California Medical Center, Los Angeles 90033
| |
Collapse
|
4
|
Hatton DC, McCarron DA. Dietary calcium and blood pressure in experimental models of hypertension. A review. Hypertension 1994; 23:513-30. [PMID: 8144221 DOI: 10.1161/01.hyp.23.4.513] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
More than 80 studies have reported lowered blood pressure after dietary calcium enrichment in experimental models of hypertension. The evidence presented here suggests that dietary calcium may act concurrently through a number of physiological mechanisms to influence blood pressure. The importance of any given mechanism may vary depending on the experimental model under consideration. Supplemental dietary calcium is associated with reduced membrane permeability, increased Ca(2+)-ATPase and Na,K-ATPase, and reduced intracellular calcium. These results suggest that supplemental calcium may limit calcium influx into the cell and improve the ability of the VSMC to extrude calcium. This could be a direct effect of calcium on the VSMC or an indirect effect mediated hormonally. The calcium-regulating hormones have all been found to have vasoactive properties and therefore may influence blood pressure. Furthermore, CGRP and the proposed parathyroid hypertensive factor are both vasoactive substances that are responsive to dietary calcium. Therefore, diet-induced variations in calcium-regulating hormones may influence blood pressure. Modulation of the sympathetic nervous system is another important way that dietary calcium can influence blood pressure. There is evidence of altered norepinephrine levels in the hypothalamus as a consequence of manipulations of dietary calcium as well as changes in central sympathetic nervous system outflow. Dietary calcium has also been shown to specifically modify alpha 1-adrenergic receptor activity in the periphery. In some experimental models of hypertension, dietary calcium may alter blood pressure by changing the metabolism of other electrolytes. For example, the ability of calcium to prevent sodium chloride-induced elevations in blood pressure may be attributed to natriuresis. However, natriuresis does not account for all of the interactive effects of calcium and sodium chloride on blood pressure. Sodium chloride-induced hypertension may be due in part to calcium wasting and subsequent elevation of calcium-regulating hormones. Chloride is an important mediator of this effect because it appears that sodium does not cause calcium wasting when it is not combined with chloride. More attention to the central nervous system effects of dietary calcium is needed. Not only can calcium itself influence neural function, but many of the calcium-regulating hormones appear to affect the central nervous system. The influence of calcium and calcium-regulating hormones on central nervous system activity may have important implications for blood pressure regulation and also may extend to other aspects of physiology and behavior.
Collapse
Affiliation(s)
- D C Hatton
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland 97201
| | | |
Collapse
|
5
|
Laragh JH. Lewis K. Dahl Memorial Lecture. The renin system and four lines fo hypertension research. Nephron heterogeneity, the calcium connection, the prorenin vasodilator limb, and plasma renin and heart attack. Hypertension 1992; 20:267-79. [PMID: 1516945 DOI: 10.1161/01.hyp.20.3.267] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the major regulator of arterial blood pressure and sodium balance, the renin axis supports normotension or hypertension via angiotensin-mediated vasoconstriction and angiotensin plus aldosterone-induced renal sodium retention. In this endocrine servo control, renal renin is released by hypotension or salt depletion; conversely, with hypertension or volume excess, plasma renin activity falls to zero. Accordingly, any renal renin secretion is abnormal in the face of arterial hypertension. Human hypertensive disorders comprise a spectrum of abnormal vasoconstriction-volume products (renin-sodium profiles). Excess plasma renin activity for the sodium balance is created by nephron heterogeneity in which a subpopulation of ischemic nephrons hypersecretes renin and retains sodium. This excess renin impairs adaptive natriuresis of neighboring normal nephrons. Research defining the pivotal role of vascular cytosolic calcium for transducing sodium or renin-mediated vasoconstriction explains the selective value of calcium antagonists for correcting the sodium-volume-mediated, and beta-blockers or angiotensin converting enzyme inhibitors for correcting renin-mediated, arteriolar vasoconstriction. The renin precursor prorenin appears to be physiologically active, causing selective vasodilation that offsets renin-mediated vasoconstriction. Overactivity of prorenin may be involved in the hyperperfusion vascular injuries of diabetes mellitus and toxemias. Prorenin underactivity may facilitate renin-mediated ischemic vascular injury. In essential hypertension, undue plasma renin activity is powerfully and independently associated with heart attack risk. Conversely, patients with low renin activity are protected from heart attack despite higher blood pressures and greater age. Also, renin or angiotensin administration consistently causes vascular injury in the heart, brain, and kidneys of animals. These data suggest new potentials for the prevention of cardiovascular sequelae (heart attack and stroke) by using explicit strategies to curtail plasma renin activity.
Collapse
Affiliation(s)
- J H Laragh
- Cardiovascular Center, New York Hospital-Cornell Medical Center, N.Y. 10021
| |
Collapse
|