1
|
Ozhava D, Lee K, Bektas C, Jackson A, Patel K, Mao Y. Optimized Adipogenic Differentiation and Delivery of Bovine Umbilical Cord Stem Cells for Cultivated Meat. Gels 2024; 10:488. [PMID: 39195017 DOI: 10.3390/gels10080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Cultivated meat, also known as cell-based or clean meat, utilizes mesenchymal stem cells to cultivate mature cell types like adipocytes, which are pivotal for imparting the desired taste and texture. The delivery of differentiated cells, crucial in cultivated meat production, is facilitated through extensive exploration of 3D culturing techniques mimicking physiological environments. In this study, we investigated the adipogenic differentiation potential of bovine umbilical cord stem cells (BUSCs), sourced from discarded birth tissue, and assessed the feasibility of delivering differentiated cells for cultivated meat using gelatin methacrylate (GelMA) as a carrier for adipose tissue. Various adipogenic inducers, previously reported to be effective for human mesenchymal stem cells (hMSCs), were evaluated individually or in combination for their efficacy in promoting the adipogenesis of BUSCs. Surprisingly, while the traditional adipogenic inducers, including insulin, dexamethasone, isobutylmethylxantine (IBMX), indomethacin, and rosiglitazone, showed no significant effect on the adipogenic differentiation of BUSCs, efficient differentiation was achieved in the presence of a fatty acid cocktail. Furthermore, we explored methods for the delivery of BUSCs. Differentiated cells were delivered either encapsulated in GelMA hydrogel or populated on the surface of GelMA microparticles (MPs) as the adipose component of cultivated meat. Our findings reveal that after adipogenic induction, the lipid production per cell was comparable when cultured either within hydrogel or on MPs. However, GelMA-MPs supported better cell growth compared to hydrogel encapsulation. Consequently, the overall lipid production is higher when BUSCs are delivered via GelMA-MPs rather than encapsulation. This study not only systematically evaluated the impact of common adipogenic inducers on BUSCs, but also identified GelMA-MPs as a promising carrier for delivering bovine adipocytes for cultivated meat production.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Krishi Patel
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Olenic M, Deelkens C, Heyman E, De Vlieghere E, Zheng X, van Hengel J, De Schauwer C, Devriendt B, De Smet S, Thorrez L. Review: Livestock cell types with myogenic differentiation potential: Considerations for the development of cultured meat. Animal 2024:101242. [PMID: 39097434 DOI: 10.1016/j.animal.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024] Open
Abstract
With the current environmental impact of large-scale animal production and societal concerns about the welfare of farm animals, researchers are questioning whether we can cultivate animal cells for the purpose of food production. This review focuses on a pivotal aspect of the cellular agriculture domain: cells. We summarised information on the various cell types from farm animals currently used for the development of cultured meat, including mesenchymal stromal cells, myoblasts, and pluripotent stem cells. The review delves into the advantages and limitations of each cell type and considers factors like the selection of the appropriate cell source, as well as cell culture conditions that influence cell performance. As current research in cultured meat seeks to create muscle fibers to mimic the texture and nutritional profile of meat, we focused on the myogenic differentiation capacity of the cells. The most commonly used cell type for this purpose are myoblasts or satellite cells, but given their limited proliferation capacity, efforts are underway to formulate myogenic differentiation protocols for mesenchymal stromal cells and pluripotent stem cells. The multipotent character of the latter cell types might enable the creation of other tissues found in meat, such as adipose and connective tissues. This review can help guiding the selection of a cell type or culture conditions in the context of cultured meat development.
Collapse
Affiliation(s)
- M Olenic
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C Deelkens
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - E Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E De Vlieghere
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Belgium
| | - X Zheng
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - J van Hengel
- Medical Cell Biology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - C De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium.
| |
Collapse
|
3
|
Heyman E, Meeremans M, Van Poucke M, Peelman L, Devriendt B, De Schauwer C. Validation of multiparametric panels for bovine mesenchymal stromal cell phenotyping. Cytometry A 2023; 103:744-755. [PMID: 37173856 DOI: 10.1002/cyto.a.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Bovine mesenchymal stromal cells (MSCs) display important features that render them valuable for cell therapy and tissue engineering strategies, such as self-renewal, multi-lineage differentiation, as well as immunomodulatory properties. These cells are also promising candidates to produce cultured meat. For all these applications, it is imperative to unequivocally identify this cell population. The isolation and in vitro tri-lineage differentiation of bovine MSCs is already described, but data on their immunophenotypic characterization is not yet complete. The currently limited availability of monoclonal antibodies (mAbs) specific for bovine MSC markers strongly hampers this research. Following the minimal criteria defined for human MSCs, bovine MSCs should express CD73, CD90, and CD105 and lack expression of CD14 or CD11b, CD34, CD45, CD79α, or CD19, and MHC-II. Additional surface proteins which have been reported to be expressed include CD29, CD44, and CD106. In this study, we aimed to immunophenotype bovine adipose tissue (AT)-derived MSCs using multi-color flow cytometry. To this end, 13 commercial Abs were screened for recognizing bovine epitopes using the appropriate positive controls. Using flow cytometry and immunofluorescence microscopy, cross-reactivity was confirmed for CD34, CD73, CD79α, and CD90. Unfortunately, none of the evaluated CD105 and CD106 Abs cross-reacted with bovine cells. Subsequently, AT-derived bovine MSCs were characterized using multi-color flow cytometry based on their expression of nine markers. Bovine MSCs clearly expressed CD29 and CD44, and lacked expression of CD14, CD45, CD73, CD79α, and MHCII, while a variable expression was observed for CD34 and CD90. In addition, the mRNA transcription level of different markers was analyzed using reverse transcription quantitative polymerase chain reaction. Using these panels, bovine MSCs can be properly immunophenotyped which allows a better characterization of this heterogenous cell population.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Meeremans
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Embryonic Development and Histological Analysis of Skeletal Muscles of Tenuidactylus caspius (Eichwald, 1831) Lizards (Reptilia: Squamata). J ZOOL SYST EVOL RES 2022. [DOI: 10.1155/2022/3618288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During embryonic development of the Caspian thin-toed gecko migration, formation of myoblast and myosatellite cells occurs in the cranial-distal direction. Somite formation begins in the body part close to the skull and ends in the tail. The time of separation of somites from the proximal mesoderm depends on the temperature of the air and the substrate. Myoblast cells reach their targets and are connected, and the membranes in the area of their contact are destroyed. Myoblast’s fusion creates myosymplasts. The intermediate stage is observed after the formation of small myosymplasts. After that, the chain shape of myosymplasts are transformed into an intermediate plaque form. At this intermediate stage, the number of a nucleus is small, the shape of the nucleus differs from each other, and the location of the nucleus varies. Afterward, the connection of the intermediate forms with each other and with myoblasts forms a rounded shape, where the initial development of myotubules takes place. A fully formed myotubular and myosatellite cells are surrounded by a basal membrane and shape a muscle fiber. The skeletal muscles of the adult Caspian thin-toed gecko are mainly composed of white fibers. Thus, it allows the gecko to move very fast in a short time. Due to the small number of mitochondria in the myotubes, oxygen gas demand is decreased and the body is prevented from overheating.
Collapse
|
5
|
Kumar A, Sood A, Han SS. Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities. Crit Rev Food Sci Nutr 2022; 63:585-612. [PMID: 36239416 DOI: 10.1080/10408398.2022.2132206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro cultured meat is an emerging area of research focus with an innovative approach through tissue engineering (i.e., cellular engineering) to meet the global food demand. The manufacturing of lab-cultivated meat is an innovative business that alleviates life-threatening environmental issues concerning public health and animal well-being on the global platform. There has been a noteworthy advancement in cultivating artificial meat, but still, there are numerous challenges that impede the swift headway of lab-grown meat production at a commercially large scale. In this review, we focus on the manufacturing of edible scaffolds for cultured meat production. In brief, first an introduction to cultivating artificial meat and its current scenario in the market is provided. Further, a discussion on the understanding of composition, cellular, and molecular communications in muscle tissue is presented, which are vital to scaling up the production of lab-grown meat. In continuation, the major components (e.g., cells, biomaterial scaffolds, and their manufacturing technologies, media, and potential bioreactors) for cultured meat production are conferred followed by a comprehensive discussion on the most recent advances in lab-cultured meat. Finally, existing challenges and opportunities including future research perspectives for scaling-up cultured meat production are discussed with conclusive interpretations.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
6
|
An Update on Applications of Cattle Mesenchymal Stromal Cells. Animals (Basel) 2022; 12:ani12151956. [PMID: 35953945 PMCID: PMC9367612 DOI: 10.3390/ani12151956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Among livestock species, cattle are crucially important for the meat and milk production industry. Cows can be affected by different pathologies, such as mastitis, endometritis and lameness, which can negatively affect either food production or reproductive efficiency. The use of mesenchymal stromal cells (MSCs) is a valuable tool both in the treatment of various medical conditions and in the application of reproductive biotechnologies. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies. Abstract Attention on mesenchymal stromal cells (MSCs) research has increased in the last decade mainly due to the promising results about their plasticity, self-renewal, differentiation potential, immune modulatory and anti-inflammatory properties that have made stem cell therapy more clinically attractive. Furthermore, MSCs can be easily isolated and expanded to be used for autologous or allogenic therapy following the administration of either freshly isolated or previously cryopreserved cells. The scientific literature on the use of stromal cells in the treatment of several animal health conditions is currently available. Although MSCs are not as widely used for clinical treatments in cows as for companion and sport animals, they have the potential to be employed to improve productivity in the cattle industry. This review provides an update on state-of-the-art applications of bovine MSCs to clinical treatments and reproductive biotechnologies.
Collapse
|
7
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
8
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
9
|
Cloning and characterization of a cDNA encoding a paired box protein, PAX7, from black sea bream, Acanthopagrus schlegelii. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
10
|
Balera Brito VG, Patrocinio MS, Alves Barreto AE, Tfaile Frasnelli SC, Lara VS, Santos CF, Penha Oliveira SH. Telmisartan impairs the in vitro osteogenic differentiation of mesenchymal stromal cells from spontaneously hypertensive male rats. Eur J Pharmacol 2021; 912:174609. [PMID: 34743978 DOI: 10.1016/j.ejphar.2021.174609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
Telmisartan (TELM) is an angiotensin II (Ang II) type 1 receptor (Agtr1) antagonist, with partial agonism for Pparg, and has been shown to affect bone metabolism. Therefore, the aim of this study was to investigate the effects of TELM in the in vitro osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSC) from spontaneously hypertensive rats (SHRs). BMSC were obtained from male SHR, and the osteogenic medium (OM) was added to the cells concomitantly with TELM (0.005, 0.05, and 0.5 μM). Undifferentiated BMSC, in control medium (CM), showed an increased viability, while the addition of OM reduced this parameter, and TELM did not show cytotoxicity in the concentrations used. BMSC in OM had an alkaline phosphatase (ALP) activity peak at d10, which decreased at d14 and d21, and TELM reduced ALP at d10 in a dose-dependent manner. Mineralization was observed in the OM at d14, which intensified at d21, but was inhibited by TELM. Agtr1b was increased in the OM, and TELM inhibited its expression. TELM reduced Opn, Ocn, and Bsp and increased Pparg expression, and at the higher concentration TELM also increased the expression of adipogenic markers, Fabp4 and Adipoq. In addition, TELM 0.5 μM increased Irs1 and Glut4, insulin and glucose metabolism markers, known to be regulated by Pparg and to be related to adipogenic phenotype. Our data shows that TELM inhibited the osteogenic differentiation and mineralization of SHR BMSC, by favoring an adipogenic prone phenotype due to Pparg upregulation.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| |
Collapse
|
11
|
Bovine Satellite Cells Isolated after 2 and 5 Days of Tissue Storage Maintain the Proliferative and Myogenic Capacity Needed for Cultured Meat Production. Int J Mol Sci 2021; 22:ijms22168376. [PMID: 34445082 PMCID: PMC8395070 DOI: 10.3390/ijms22168376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023] Open
Abstract
Cultured meat is an emerging alternative food technology which aims to deliver a more ethical, sustainable, and healthy muscle-tissue-derived food item compared to conventional meat. As start-up companies are rapidly forming and accelerating this technology, many aspects of this multi-faceted science have still not been investigated in academia. In this study, we investigated if bovine satellite cells with the ability to proliferate and undergo myogenic differentiation could be isolated after extended tissue storage, for the purpose of increasing the practicality for cultured meat production. Proliferation of bovine satellite cells isolated on the day of arrival or after 2 and 5 days of tissue storage were analyzed by metabolic and DNA-based assays, while their myogenic characteristics were investigated using RT-qPCR and immunofluorescence. Extended tissue storage up to 5 days did not negatively affect proliferation nor the ability to undergo fusion and create myosin heavy chain-positive myotubes. The expression patterns of myogenic and muscle-specific genes were also not affected after tissue storage. In fact, the data indicated a positive trend in terms of myogenic potential after tissue storage, although it was non-significant. These results suggest that the timeframe of which viable myogenic satellite cells can be isolated and used for cultured meat production can be greatly extended by proper tissue storage.
Collapse
|
12
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Deneka IE, Rodionov AV, Fomin VV. Treatment of hypertension in obese patients: focus on telmisartan. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2018. [DOI: 10.15829/1728-8800-2018-6-69-76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The article discusses the role of telmisartan in the treatment of arterial hypertension in patients with metabolic syndrome. Telmisartan is second-generation type 1 angiotensin II receptor blocker, which has unique pleiotropic effects due to partial affinity for receptors that activate the proliferation of subtype y peroxisomes (PPARy) located in adipose tissue. The interrelation of metaflamation, a specific chronic inflammatory process with pathogenetic mechanisms of development of cardiovascular diseases, including arterial hypertension, is also described in study. The role of the adiponectin peptide is considered, which synthesis is stimulated by partial PPARy receptor agonists (as mentioned above — telmisartan). It has a positive effect on fat and carbohydrate metabolism, as well as cardioprotective properties. The conclusion contains the results of numerous randomized studies and meta-analyzes confirming the high efficacy of telmisartan in the treatment of arterial hypertension in patients with morbid obesity.
Collapse
Affiliation(s)
- I. E. Deneka
- I.M. Sechenov First Moscow State Medical University
| | | | - V. V. Fomin
- I.M. Sechenov First Moscow State Medical University
| |
Collapse
|
14
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
15
|
Zhao XX, An XL, Zhu XC, Jiang Y, Zhai YH, Zhang S, Cai NN, Tang B, Li ZY, Zhang XM. Inhibiting transforming growth factor-β signaling regulates in vitro maintenance and differentiation of bovine bone marrow mesenchymal stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:406-416. [PMID: 30460778 DOI: 10.1002/jez.b.22836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Bovine bone marrow mesenchymal stem cells (bBMSC) are potential stem cell source which can be used for multipurpose. However, their application is limited because the in vitro maintenance of these cells is usually accompanied by aging and multipotency losing. Considering transforming growth factor-β (TGF-β) pathway inhibitor Repsox is beneficial for cell reprogramming, here we investigated its impacts on the maintenance and differentiation of bBMSC. The bBMSC were enriched and characterized by morphology, immunofluorescent staining, flow cytometry, and multilineage differentiation. The impacts of Repsox on their proliferation, apoptosis, cell cycle, multipotency, and differentiation were examined by Cell Counting Kit-8 (CCK-8), real-time polymerase chain reaction, induced differentiation and specific staining. The results showed that highly purified cluster of diffrentiation 73+ (CD73 + )/CD90 + /CD105 + /CD34 - /CD45 - bBMSC with adipogenic, osteogenic, and chondrogenic differentiation capacities were enriched. Repsox treatments (5 μM, 48 hr) enhanced the messenger RNA mRNA levels of the proliferation gene (telomerase reverse transcriptase [ TERT]; basic fibroblast growth factor [ bFGF]), apoptosis-related gene ( bax and Bcl2), antiapoptosis ratio ( Bcl2/bax), and pluripotency marker gene ( Oct4, Sox2, and Nanog), instead of changing the cell cycle, in bBMSC. Repsox treatments also enhanced the osteogenic differentiation but attenuated the chondrogenic differentiation of bBMSC, concomitant with decreased Smad2 and increased Smad3/4 expressions in TGF-β pathway. Collectively, inhibiting TGF-β/Smad signaling by Repsox regulates the in vitro maintenance and differentiation of bBMSC.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xing-Lan An
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Xian-Chun Zhu
- Department of Orthodontics, Stomatological Hospital, Jilin University, Changchun, China
| | - Yu Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Hui Zhai
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Ning-Ning Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- State & Local Joint Engineering Laboratory for Animal Models of Human Diseases, The First Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhang S, Zhao C, Liu S, Wang Y, Zhao Y, Guan W, Zhu Z. Characteristics and multi‑lineage differentiation of bone marrow mesenchymal stem cells derived from the Tibetan mastiff. Mol Med Rep 2018; 18:2097-2109. [PMID: 29916546 PMCID: PMC6072167 DOI: 10.3892/mmr.2018.9172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are pluripotent stem cells that are regarded as ideal resources for the reconstruction of tissues and organs. The Tibetan mastiff is a breed of domesticated Chinese native dog that is well-adjusted to the high-altitude environments of Tibet. To the best of our knowledge, the biological characterization and multi-lineage differentiation of Tibetan mastiff BM-MSCs have not been reported previously. Therefore, the present study aimed to investigate the biological characteristics and therapeutic potential of Tibetan mastiff BM-MSCs. A cell culture system was constructed and cells were cultured to 23 passages in vitro. Growth curves and colony formation studies suggested that BM-MSCs had a high self-renewal capacity and that their proliferation rate declined with age. Karyotype analysis demonstrated that BM-MSCs were diploid and genetically stable. Semi-quantitative polymerase chain reaction analysis revealed that BM-MSCs positively expressed cluster of differentiation (CD)73, CD90, CD105, CD166 and vimentin, although they were negative for the endothelial cell marker CD31. Additionally, immunofluorescence staining revealed that the cells expressed CD29, CD44, CD90, CD105 and vimentin. Flow cytometric analysis revealed that the rates of positive expression of vimentin, CD44, CD90 and CD105 were all >97%. BM-MSCs were able to differentiate into adipocytes, osteoblasts, cartilage cells, hepatocytes and functional insulin-secreting cells. In conclusion, Tibetan mastiff BM-MSCs may be purified successfully using a whole bone marrow culture method. The findings of the current study suggested important potential applications of BM-MSCs as a source for regenerative therapies.
Collapse
Affiliation(s)
- Shuang Zhang
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Chenqiong Zhao
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Shi Liu
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yufeng Wang
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yuhua Zhao
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Zhiqiang Zhu
- Scientific Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| |
Collapse
|