1
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
2
|
Kolac UK, Donmez Yalcin G, Karayel R, Yalcin A. The role of protein kinase R in placental inflammation, mtUPR and apoptosis. Placenta 2023; 139:200-211. [PMID: 37463546 DOI: 10.1016/j.placenta.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Placental inflammation is implicated in the pathophysiology of many pregnancy complications, including fetal growth restriction, preeclampsia, gestational diabetes, and choriocarcinoma. Mitochondrial dysfunction, one of the outcomes of placental inflammation, is characterized by loss of membrane potential, accumulation of oxygen radicals, mitochondrial protein folding defects, and disturbances in mitochondrial dynamics. Protein kinase R (PKR) is stimulated by double-stranded RNA and bacterial endotoxins in the presence of pathogens and is a critical immune response enzyme. PKR is also correlated with the cell death response during endoplasmic reticulum stress. In this study, we aim to investigate the effects of PKR activity stimulated by lipopolysaccharide (LPS), and double-stranded RNA analog (Poly I:C) on mitochondrial unfolded protein response (mtUPR), mitochondrial membrane potential, apoptosis, and oxidative stress in placental trophoblasts. METHODS We applied LPS and Poly I:C to BeWo cells to induce PKR activation. In addition, cells were treated with 2-aminopurine (2-AP) to inhibit the kinase activity of PKR. Protein levels of ATP-dependent Clp protease proteolytic subunit (CLPP) and heat shock protein 60 (HSP60) were determined after treatments. Apoptotic markers were detected by real-time PCR and flow cytometry. PKR-induced reactive oxygen radicals (ROS) accumulation and mitochondrial membrane potential change were assessed by flow cytometry. RESULTS It was determined that PKR activation-induced apoptosis in BeWo cells by reducing the levels of mtUPR proteins (CLPP and HSP60) and caused a decrease in mitochondrial membrane potential. PKR inhibition was sufficient for decreases in apoptotic markers and caused a reduction in the ratio of depolarized and ROS (+) cells. DISCUSSION Our results showed that LPS and Poly I:C administration stimulated PKR in BeWo cells in vitro. Furthermore, PKR activation is correlated with the levels of proteins involved in mitochondrial homeostasis and apoptosis. Our findings will contribute to understanding the role of PKR activation in placental inflammation and related diseases.
Collapse
Affiliation(s)
- Umut Kerem Kolac
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gizem Donmez Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Ramazan Karayel
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Abdullah Yalcin
- Department of Medical Biology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
3
|
Dasari D, Bhat A, Mangali S, Ghatage T, Lahane GP, Sriram D, Dhar A. Canagliflozin and Dapagliflozin Attenuate Glucolipotoxicity-Induced Oxidative Stress and Apoptosis in Cardiomyocytes via Inhibition of Sodium-Glucose Cotransporter-1. ACS Pharmacol Transl Sci 2022; 5:216-225. [PMID: 35434529 PMCID: PMC9003386 DOI: 10.1021/acsptsci.1c00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Sodium-dependent glucose cotransporter 2 inhibitors (SGLT2) are recently approved drugs for the treatment of diabetes that regulate blood glucose levels by inhibiting reabsorption of glucose and sodium in the proximal tubules of the kidney. SGLT2 inhibitors have also shown cardiovascular (CV) benefits in diabetic patients. However, the therapeutic efficacy of SGLT2 inhibitors with respect to CV disease needs further investigation. Thus, the aim of the present study was to examine the effects of SGLT2 inhibitors, canagliflozin (CANA) and dapagliflozin (DAPA) in vitro under glucolipotoxic condition by treating cultured cardiomyocytes (H9C2) with high glucose (HG) and high lipid, palmitic acid (PA), to investigate whether inhibition of sodium glucose cotransporter could prevent any harmful effects of glucolipotoxicity in these cells. SGLT1 expression was measured by immunofluorescence staining and quantitative polymerase chain reaction. Oxidative stress and apoptosis were measured by flow cytometry. Hypertrophy was measured by hematoxylin and eosin (H&E) and crystal violet staining. A significant increase in SGLT1 expression was observed in HG- and PA-treated cardiomyocytes. Also, a significant increase in reactive oxygen species generation and apoptosis was observed in HG+PA-treated cultured cardiomyocytes. HG- and PA-treated cardiomyocytes developed significant structural alterations. All these effects of HG and PA were attenuated by CANA and DAPA. In conclusion, our study demonstrates upregulation of SGLT1 induces oxidative stress and apoptosis in cultured cardiomyocytes. Thus, inhibition of SGLT1 may be used as a possible approach for the treatment of CVD in diabetic patients.
Collapse
Affiliation(s)
- Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, Bagla Suchani, Jammu and Kashmir 181143, India
| | - Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Trupti Ghatage
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India.,Department of Molecular Biology, Central University of Jammu, Bagla Suchani, Jammu and Kashmir 181143, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| |
Collapse
|
4
|
High fructose and streptozotocin induced diabetic impairments are mitigated by Indirubin-3-hydrazone via downregulation of PKR pathway in Wistar rats. Sci Rep 2021; 11:12924. [PMID: 34155273 PMCID: PMC8217483 DOI: 10.1038/s41598-021-92345-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Metabolic disorders are becoming more common in young population due to increased consumption of carbohydrate rich diet, lack of physical activity and stress. Fructose is used as a sweetener in many carbonated beverages and is a known inducer of oxidative stress and hypertension. Up-regulation of the double-stranded RNA-dependent protein kinase (PKR) causes impairment in insulin signaling pathway and metabolic dysfunctions in type 2 diabetes mellitus. In the present study we investigated the role of PKR and associated pathways in high fructose (HF) and streptozotocin (STZ) induced diabetes and whether indirubin-3-hydrazone (IHZ), a novel PKR inhibitor can reverse the HF and STZ induced diabetic impairments in Wistar rats. Diabetes was induced by feeding rats 20% high fructose in drinking water for 6 weeks and by giving a single dose of STZ (35 mg/kg., i.p) at the end of week 5. Glucose and lipid levels were measured by using assay kits. Expression of PKR and its downstream genes were determined by immunohistochemistry, qRT-PCR and western blotting techniques. Histo-pathological studies were performed using H&E staining. Fibrosis was detected in insulin sensitive tissues and organs using Sirius red and Masson’s trichrome staining and apoptosis by TUNEL assay. HF and STZ induced hyperglycemia, fibrosis, oxidative stress, and inflammation in liver, pancreas, skeletal muscle and adipose tissue are mediated via PKR pathway and its downstream effectors, and these effects were attenuated by PKR inhibitor IHZ. Thus, inhibition of PKR can protect insulin sensitive organs and tissues from HF induced diabetic impairments via the inhibition of c-Jun N-terminal kinase (JNK) pathway.
Collapse
|
5
|
Mangali S, Bhat A, Dasari D, Sriram D, Dhar A. Inhibition of double stranded RNA dependent protein kinase (PKR) abrogates isoproterenol induced myocardial ischemia in vitro in cultured cardiomyocytes and in vivo in wistar rats. Eur J Pharmacol 2021; 906:174223. [PMID: 34081906 DOI: 10.1016/j.ejphar.2021.174223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
Protein kinase R (PKR) plays a main role in inflammation, insulin resistance, and glucose balance. It is activated by various stress signals and is key mediators of diabetes and associated complications. In the present study, we investigated the effect of PKR inhibition on myocardial dysfunction, inflammatory, cell death and interrelated signalling pathways in isoproterenol induced myocardial ischemia in vivo in wistar rats and in vitro in cultured cardiomyocytes. H9C2 rat cardiomyocytes were treated with 10 μM Isoproterenol (ISO). For in vivo studies, rats were divided into 4 groups: control, ischemic group (ISO), preventive group, curative group and each group consist of 8 rats. Myocardial Ischemia (MI) was induced with two subsequent doses of ISO (100 mg/kg, s.c.). The rats were treated with PKR inhibitor, C16 (166.5 μg/kg, i.p.) for 14 days. Heart rate, systolic, diastolic and mean arterial pressures were measured by non-invasive BP apparatus. Cardiac biomarkers were measured by commercial kits. Ischemic Zone, Morphological abnormalities and fibrosis of heart was detected by TTC, haematoxylin & eosin staining, Masson's and Sirius red staining respectively. Protein expression was done by western blotting and immune histochemistry. mRNA expression was done by RT-PCR. MI was characterized by declined myocardial performance along with elevation of cardiac biomarkers and associated with increased expression of PKR, oxidative-nitrosative stress, activated various inflammatory pathways (nuclear factor kappa light chain enhancer of activated B cells -NF-κB); Mitogen-activated protein kinases-MAPK; c-Jun N-terminal kinase-JNK), increased expression of inflammatory markers (Tumour necrosis factor alpha-TNF-α), markers of fibrosis (Alpha smooth muscle actin -α-SMA; Transforming growth factor beta-TGF-β), enhanced cell death (Ischemic zone) and increased expression of extracellular regulated-kinases (ERK-1/2) and advanced glycation end products (AGE's). Interestingly, inhibition of PKR attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and inter-related signalling pathways. Our findings report that inhibition of PKR improves the ischemic mediated inflammation, apoptosis, cardiac hypertrophy and fibrosis in MI induced rats. Hence, inhibition of PKR might be one of intervention therapy for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, India
| | - Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
6
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
7
|
ALTamimi JZ, BinMowyna MN, AlFaris NA, Alagal RI, El-kott AF, AL-Farga AM. Fisetin protects against streptozotocin-induced diabetic cardiomyopathy in rats by suppressing fatty acid oxidation and inhibiting protein kinase R. Saudi Pharm J 2021; 29:27-42. [PMID: 33603537 PMCID: PMC7873759 DOI: 10.1016/j.jsps.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023] Open
Abstract
This study examined if the Fisetin against streptozotocin-induced diabetic cardiomyopathy (DC) in rats involves regulating cardiac metabolism and suppressing protein kinase R (PKR). Male rats were divided (12/groups) as control (non-diabetic), control + Fisetin, T1DM, and T1DM + Fisetin. Fisetin was administered orally at a final dose of 2.5 mg/kg for 12 weeks. In T1DM1-induced rats, Fisetin prevented heart and final body weights loss, lowered circulatory levels troponin I and creatinine kinase-MB (CK-MB), increased fasting insulin levels, and improved ventricular systolic and diastolic functions. It also preserved the structure of the cardiomyocytes and reduced oxidative stress, fibrosis, protein levels of transforming growth factor-β1 (TGF-β1), collagenase 1A, caspase-3, and the activation of JNK, p53, and p38 MAPK. In the control and diabetic rats, Fisetin attenuated fasting hyperglycaemia, the increases in glucose levels after the oral and insulin tolerance tests, and HOMA-IR. It also increased cardiac glucose oxidation by increasing the activity of private dehydrogenase (PDH), phosphofructokinase (PFK), protein levels of PPAR-α and suppressed cardiac inflammation by inhibiting NF-κB. These effects were associated with a reduction in the activity of PKR and subsequent increase in the activity of eeukaryotic initiation factor 2 (eIF2) with a parallel increase in protein levels of p67, a cellular inhibitor of PKR. In cultured cardiomyocytes, Fisetin, prevented high glucose (HG)-induced activation of PKR and reduction in p67, in a dose-dependent manner. However, the effect of Fisetin on PKR was diminished in LG and HG-treated cardiomyocytes with p67-siRNA. In conclusion, Fisetin protects against DC in rats by improving cardiac glucose metabolism and suppressing PKR.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mona N. BinMowyna
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Nora A. AlFaris
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham I. Alagal
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla F. El-kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ammar M. AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Mangali S, Bhat A, Jadhav K, Kalra J, Sriram D, Vamsi Krishna Venuganti V, Dhar A. Upregulation of PKR pathway mediates glucolipotoxicity induced diabetic cardiomyopathy in vivo in wistar rats and in vitro in cultured cardiomyocytes. Biochem Pharmacol 2020; 177:113948. [DOI: 10.1016/j.bcp.2020.113948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
|
9
|
Kalra J, Mangali SB, Dasari D, Bhat A, Goyal S, Dhar I, Sriram D, Dhar A. SGLT1 inhibition boon or bane for diabetes-associated cardiomyopathy. Fundam Clin Pharmacol 2019; 34:173-188. [PMID: 31698522 DOI: 10.1111/fcp.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
Chronic hyperglycaemia is a peculiar feature of diabetes mellitus (DM). Sequential metabolic abnormalities accompanying glucotoxicity are some of its implications. Glucotoxicity most likely corresponds to the vascular intricacy and metabolic alterations, such as increased oxidation of free fatty acids and reduced glucose oxidation. More than half of those with diabetes also develop cardiac abnormalities due to unknown causes, posing a major threat to the currently available marketed preparations which are being used for treating these cardiac complications. Even though impairment in cardiac functioning is the principal cause of death in individuals with type 2 diabetes (T2D), reducing plasma glucose levels has little effect on cardiovascular disease (CVD) risk. In vitro and in vivo studies have demonstrated that inhibitors of sodium glucose transporter (SGLT) represent a putative therapeutic intervention for these pathological conditions. Several clinical trials have reported the efficacy of SGLT inhibitors as a novel and potent antidiabetic agent which along with its antihyperglycaemic activity possesses the potential of effectively treating its associated cardiac abnormalities. Thus, hereby, the present review highlights the role of SGLT inhibitors as a successful drug candidate for correcting the shifts in deregulation of cardiac energy substrate metabolism together with its role in treating diabetes-related cardiac perturbations.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Suresh Babu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu, 181143, India
| | - Srashti Goyal
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, 5009, Norway
| | - Dharamrajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| |
Collapse
|
10
|
Zhivkova V, Kiecker F, Langer P, Eberle J. Crucial role of reactive oxygen species (ROS) for the proapoptotic effects of indirubin derivative DKP-073 in melanoma cells. Mol Carcinog 2018; 58:258-269. [PMID: 30320471 DOI: 10.1002/mc.22924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Melanoma represents a prime example demonstrating the success of targeted therapy in cancer. Nevertheless, it remained a deadly disease until now, and the identification of new, independent strategies as well as the understanding of their molecular mechanisms may help to finally overcome the high mortality. Both indirubins and TNF-related apoptosis-inducing ligand (TRAIL) represent promising candidates. Here, the indirubin derivative DKP-073 is shown to trigger apoptosis in melanoma cells, which is enhanced by the combination with TRAIL and is accompanied by complete loss of cell viability. Addressing the signaling cascade, characteristic molecular steps were identified as caspase-3 activation, downregulation of XIAP, upregulation of p53 and TRAIL receptor 2, loss of mitochondrial membrane potential, and STAT-3 dephosphorylation. The decisive step, however, turned out to be the early production of ROS already at 1 h. This was proven by antioxidant pretreatment, which completely abolished apoptosis induction and loss of cell viability as well as abrogated all signaling effects listed above. Thus, ROS appeared as upstream of all proapoptotic signaling. The data indicate a dominant role of ROS in apoptosis regulation, and the new pathway may expose a possible Achilleś heel of melanoma.
Collapse
Affiliation(s)
- Veselina Zhivkova
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Felix Kiecker
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Rostock, Germany.,Leibniz Institute of Catalysis at the University of Rostock e.V., Rostock, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Mangali S, Bhat A, Udumula MP, Dhar I, Sriram D, Dhar A. Inhibition of protein kinase R protects against palmitic acid-induced inflammation, oxidative stress, and apoptosis through the JNK/NF-kB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J Cell Biochem 2018; 120:3651-3663. [PMID: 30259999 DOI: 10.1002/jcb.27643] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Double-stranded RNA-dependent protein kinase (PKR) is a critical regulator of apoptosis, oxidative stress, and inflammation under hyperlipidemic and insulin resistance conditions. Saturated free fatty acids, such as palmitic acid (PA), are known inducers of apoptosis in numerous cell types. However, the underlying molecular mechanism is not fully understood. The aim of the present study was to examine the effect of PA on cultured rat H9C2 cardiac myocytes cells and to investigate the PKR mediated harmful effects of PA in vitro in cultured cardiomyocytes. EXPERIMENTAL APPROACH PKR expression was determined by immunofluorescence and immunoblotting. Oxidative stress and apoptosis were determined by flow cytometry and assay kits. The expression of different gene markers of apoptosis, oxidative stress, and inflammation were measured by Western blot analysis and reverse transcription polymerase chain reaction. KEY RESULTS PKR expression, reactive oxygen species levels as well as apoptosis were increased in PA-treated cultured H9C2 cardiomyocytes. The harmful effects of PA were attenuated by a selective PKR inhibitor, C16. Moreover, we observed that upregulation of c-Jun N-terminal kinase (JNK), nuclear factor-kB (NF-kB) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) pathways is associated with increased expression of interleukin 6 and tumor necrosis factor-α in PA-treated cardiomyocytes and attenuation by a selective PKR inhibitor. CONCLUSION AND IMPLICATIONS Our study reports, for the first time, that PKR-mediated harmful effects of PA in cultured cardiomyocytes via activation of JNK, NF-kB, and NLRP3 pathways. Inhibition of PKR is one of the possible mechanistic approaches to inhibit inflammation, oxidative stress, and apoptosis in lipotoxicity-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Indu Dhar
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
13
|
Udumula MP, Bhat A, Mangali S, Kalra J, Dhar I, Sriram D, Dhar A. Pharmacological evaluation of novel PKR inhibitor indirubin-3-hydrazone in-vitro in cardiac myocytes and in-vivo in wistar rats. Life Sci 2018; 209:85-96. [PMID: 30076923 DOI: 10.1016/j.lfs.2018.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
AIMS Double stranded protein kinase R cellular response is associated with various stress signals such as nutrients, endoplasmic stress, cytokines and mechanical stress. Increased PKR activity has been observed under diabetic and cardiovascular disease conditions. Most of the currently available PKR inhibitors are non-specific and have other effects as well. Thus, the aim of the present study was to examine the effect of novel PKR inhibitor indirubin-3-hydrazone (IHZ) in cultured rat H9C2 cardiomyocytes and wistar rats. MATERIALS AND METHODS PKR expression was determined by Q-PCR, immunofluorescence and immunoblotting. The expression of different gene markers for apoptosis was measured by RT-PCR. Apoptosis and oxidative stress were determined by flow cytometry. KEY FINDINGS High glucose (HG) treated H9C2 cardiomyocytes and high fructose (HF) treated wistar rats developed a significant increase in PKR expression. A significant increase in apoptosis and generation of reactive oxygen species was also observed in HG treated H9C2 cells and HF treated rats. Reduced vacuole formation and prominent nuclei were also observed in high glucose treated cells. Cardiac hypertrophy and increased fibrosis were observed in HF treated rats. All these effects of HG and HF were attenuated by novel PKR inhibitor, indirubin-3-hydrazone. SIGNIFICANCE Our results indicate IHZ as an effective inhibitor of PKR in vitro and in-vivo, thus it may prove very useful in blocking the multiple harmful effects of PKR.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, India
| | - Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Jaspreet Kalra
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Indu Dhar
- Department of Clinical Sciences, University of Bergen, Norway
| | - Dharamrajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India..
| |
Collapse
|
14
|
Kalra J, Mangali SB, Bhat A, Dhar I, Udumula MP, Dhar A. Imoxin attenuates high fructose-induced oxidative stress and apoptosis in renal epithelial cells via downregulation of protein kinase R pathway. Fundam Clin Pharmacol 2018; 32:297-305. [DOI: 10.1111/fcp.12352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Hyderabad Andhra Pradesh 500078 India
| | - Suresh Babu Mangali
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Hyderabad Andhra Pradesh 500078 India
| | - Audesh Bhat
- Department of Molecular Biology; Central University of Jammu; Jammu Jammu and Kashmir 181143 India
| | - Indu Dhar
- Department of Clinical Sciences; University of Bergen; Bergen 5007 Norway
| | - Mary Priyanka Udumula
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Hyderabad Andhra Pradesh 500078 India
| | - Arti Dhar
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Hyderabad Andhra Pradesh 500078 India
| |
Collapse
|
15
|
Udumula MP, Babu MS, Bhat A, Dhar I, Sriram D, Dhar A. High glucose impairs insulin signaling via activation of PKR pathway in L6 muscle cells. Biochem Biophys Res Commun 2017; 486:645-651. [DOI: 10.1016/j.bbrc.2017.03.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
|
16
|
Kalra J, Dhar A. Double-stranded RNA-dependent protein kinase signalling and paradigms of cardiometabolic syndrome. Fundam Clin Pharmacol 2017; 31:265-279. [DOI: 10.1111/fcp.12261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani, Hyderabad Campus; Jawahar Nagar Shameerpet, Hyderabad Andhra Pradesh 500078 India
| | - Arti Dhar
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani, Hyderabad Campus; Jawahar Nagar Shameerpet, Hyderabad Andhra Pradesh 500078 India
| |
Collapse
|
17
|
Dhar A. The Role of PKR as a Potential Target for Treating Cardiovascular Diseases. Curr Cardiol Rev 2017; 13:28-31. [PMID: 27225893 PMCID: PMC5324325 DOI: 10.2174/1573403x12666160526122600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death globally with limited treatment options. Despite improved pharmacological therapy, scientific understandings on the root mechanisms of cardiovascular diseases are still not fully understood. It is well known that inflammation plays a key role in the pathogenesis of cardiovascular diseases and controlling this inflammatory pathway may inhibit the progression of this chronic disease. Protein Kinase R (PKR), a serine threonine kinase is activated during various pathological conditions. Activation of PKR can induce apoptosis, inflammation and oxidative stress. Since PKR has multidimensional roles, thus PKR is an attractive target for treating cardiovascular and metabolic disorders. The goal of this review is to discuss potential role of PKR in cardiovascular diseases, pathways activated by it and association between pathways activated.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| |
Collapse
|
18
|
Dhar A, Udumula MP, Medapi B, Bhat A, Dhar I, Malapati P, Babu MS, Kalra J, Sriram D, Desai KM. Pharmacological evaluation of novel alagebrium analogs as methylglyoxal scavengers in vitro in cardiac myocytes and in vivo in SD rats. Int J Cardiol 2016; 223:581-589. [DOI: 10.1016/j.ijcard.2016.08.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/09/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022]
|
19
|
Cheng X, Merz KH. The Role of Indirubins in Inflammation and Associated Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:269-290. [DOI: 10.1007/978-3-319-41342-6_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Dhar A, Dhar I, Bhat A, Desai KM. Alagebrium attenuates methylglyoxal induced oxidative stress and AGE formation in H9C2 cardiac myocytes. Life Sci 2016; 146:8-14. [PMID: 26772824 DOI: 10.1016/j.lfs.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
AIM Diabetes mellitus associated cardiovascular complications are a leading cause of morbidity and mortality worldwide. Methylglyoxal (MG) is a reactive ketoaldehyde and a byproduct of glucose metabolism and an inducer of advanced glycation endproducts (AGEs). Alagebrium (ALA) is an AGEs crosslink breaker, however, the effects of ALA on MG levels and its consequences in cultured rat cardiomyocytes are not known. The aim of the present study was to examine the effect of high glucose and MG on cultured rat cardiomyocytes and to investigate whether ALA could prevent any deleterious effects of high glucose and MG in these cells. MAIN METHODS MG levels were determined by HPLC. The expression of different genes was measured by RT-PCR. Oxidative stress and AGEs formation was determined by DCF probe and immunocytochemistry respectively. KEY FINDINGS High glucose- and MG treated- cardiomyocytes developed a significant increase in MG, and the expression for caspase-3, Bax, RAGE and NF-KB, which were all attenuated after pretreatment with ALA. A significant increase in reactive oxygen species generation and AGEs formation in high glucose- and MG treated- cultured cardiomyocytes was also observed, which was attenuated after pretreatment with ALA. SIGNIFICANCE ALA may have a preventive role against the deleterious effects of high glucose and MG in the heart. Prevention of dicarbonyl-induced AGEs, by safer and specific scavengers of MG is an attractive therapeutic option.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India.
| | - Indu Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Audesh Bhat
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik M Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|