1
|
Hejazian SM, Hejazian SS, Mostafavi SM, Hosseiniyan SM, Montazersaheb S, Ardalan M, Zununi Vahed S, Barzegari A. Targeting cellular senescence in kidney diseases and aging: A focus on mesenchymal stem cells and their paracrine factors. Cell Commun Signal 2024; 22:609. [PMID: 39696575 DOI: 10.1186/s12964-024-01968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders. Elevations in senescent cells and senescence-associated secretory phenotype (SASP) levels correlate with decreased kidney function, kidney ailments, and age-related conditions. Strategies involving senotherapeutic agents like senolytics, senomorphics, and senoinflammation have been devised to specifically target senescent cells. Mesenchymal stem cells (MSCs) and their secreted factors may also offer alternative approaches for anti-senescence interventions. The MSC-derived secretome compromises significant therapeutic benefits in kidney diseases by facilitating tissue repair via anti-inflammatory, anti-fibrosis, anti-apoptotic, and pro-angiogenesis effects, thereby improving kidney function and mitigating disease progression. Moreover, by promoting the clearance of senescent cells or modulating their secretory profiles, MSCs could potentially reverse some age-related declines in kidney function.This review article intends to shed light on the present discoveries concerning the role of cellular senescence in kidney aging and diseases. Furthermore, it outlines the role of senotherapeutics utilized to alleviate kidney damage and aging. It also highlights the possible impact of MSCs secretome on mitigating kidney injury and prolonging lifespan across various models of kidney diseases as a novel senotherapy.
Collapse
Affiliation(s)
| | - Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Mostafavi
- Ayatollah Taleghani Hospital, Research Development Unit, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mani I, Singh V. An overview of receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:1-18. [PMID: 36631188 DOI: 10.1016/bs.pmbts.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocytosis is a cellular process which mediates receptor internalization, nutrient uptake, and the regulation of cell signaling. Microorganisms (many bacteria and viruses) and toxins also use the same process and enter the cells. Generally, endocytosis is considered in the three forms such as phagocytosis (cell eating), pinocytosis (cell drinking), and highly selective receptor-mediated endocytosis (clathrin-dependent and independent). Several endocytic routes exist in an analogous, achieving diverse functions. Most studies on endocytosis have used transformed cells in culture. To visualize the receptor internalization, trafficking, and signaling in subcellular organelles, a green fluorescent protein-tagged receptor has been utilized. It also helps to visualize the endocytosis effects in live-cell imaging. Confocal laser microscopy increases our understanding of receptor endocytosis and signaling. Site-directed mutagenesis studies demonstrated that many short-sequence motifs of the cytoplasmic domain of receptors significantly play a vital role in receptor internalization, subcellular trafficking, and signaling. However, other factors also regulate receptor internalization through clathrin-coated vesicles. Receptor endocytosis can occur through clathrin-dependent and clathrin-independent pathways. This chapter briefly discusses the internalization, trafficking, and signaling of various receptors in normal conditions. In addition, it also highlights the malfunction of the receptor in disease conditions.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
3
|
Elkhoely A. Liraglutide ameliorates gentamicin-induced acute kidney injury in rats via PGC-1α- mediated mitochondrial biogenesis: Involvement of PKA/CREB and Notch/Hes-1 signaling pathways. Int Immunopharmacol 2023; 114:109578. [PMID: 36525794 DOI: 10.1016/j.intimp.2022.109578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a challenging side effect which may clinically impede the use of gentamicin (GM). The present study explored the impact of liraglutide (Lir) on GM-induced kidney injury in rats. Lir (0.2 and 0.4 mg/kg, s.c) was given for 10 days (a dose/day) starting 3 days before giving GM (100 mg/kg, i.p) once daily for 7 days. Interestingly, Lir notably ameliorated GM-induced elevated levels of renal injury markers; urea and creatinine. Moreover, Lir remarkably mitigated malondialdehyde (MDA) level and elevated glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Also, Lir pre-treatment notably diminished inflammatory markers levels; interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), vascular cell adhesion molecule (VCAM), monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (INF-γ). In addition, Lir significantly replenished expression of Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α), Protein kinase A (PKA), cAMP response element-binding protein (CREB), nuclear Nuclear factor erythroid 2-related factor 2 (Nrf2), heme Oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2), and remarkably attenuated expression of Notch homolog 1 (Notch1), Hairy and enhancer of split-1 (Hes-1), Bcl-2-associated X (Bax), cleaved caspase 3 and nuclear Nuclear factor Kappa B (NF-κB (p65)). The nephroprotective activity of Lir was further confirmed by histopathological examination as well as transmission electron microscopy (TEM). In conclusion Lir achieved its nephroprotective effects through the amelioration of oxidative stress, inflammatory and apoptotic manifestations. It is worth-mentioning that the current study is the first to focus on the involvement of mitochondrial biogenesis and its upstream regulators, PKA/CREB and Notch/Hes-1 signaling pathways in the nephroprotective potentials of Lir. The attenuation of the aforementioned injurious aspects is partially attributed to the improvement of the mitochondrial status as demonstrated by elevated PGC-1α expression via acceleration of PKA/CREB and abatement of Notch/Hes-1 signaling pathways.
Collapse
Affiliation(s)
- Abeer Elkhoely
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
4
|
Kha M, Krawczyk K, Choong OK, De Luca F, Altiparmak G, Källberg E, Nilsson H, Leandersson K, Swärd K, Johansson ME. The injury-induced transcription factor SOX9 alters the expression of LBR, HMGA2, and HIPK3 in the human kidney. Am J Physiol Renal Physiol 2023; 324:F75-F90. [PMID: 36454702 DOI: 10.1152/ajprenal.00196.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-β1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krzysztof Krawczyk
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Oi Kuan Choong
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco De Luca
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
Mani I, Singh V. Receptor biology: Challenges and opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:337-349. [PMID: 36813364 DOI: 10.1016/bs.pmbts.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor biology provides a great opportunity to understand the ligand-receptor signaling involved in health and disease processes. Receptor endocytosis and signaling play a vital role in health conditions. Receptor-based signaling is the main form of communication between cells and cells with the environment. However, if any irregularities happen during these events, the consequences of pathophysiological conditions occur. Various methods are utilized to know structure, function, and regulation of receptor proteins. Further, live-cell imaging and genetic manipulations have aided in the understanding of receptor internalization, subcellular trafficking, signaling, metabolic degradation, etc. Understanding the genetics, biochemistry, and physiology of receptors and ligands is very helpful to explore various aspects such as prognosis, diagnosis, and treatment of disease. However, there are enormous challenges that exist to explore receptor biology further. This chapter briefly discusses the current challenges and emerging opportunities of receptor biology.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
6
|
The Role of Notch3 Signaling in Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1809408. [PMID: 33149805 PMCID: PMC7603621 DOI: 10.1155/2020/1809408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Notch receptors are transmembrane proteins that are members of the epidermal growth factor-like family. These receptors are widely expressed on the cell surface and are highly conserved. Binding to ligands on adjacent cells results in cleavage of these receptors, and their intracellular domains translocate into the nucleus, where target gene transcription is initiated. In the mammalian kidney, Notch receptors are activated during nephrogenesis and become silenced in the normal kidney after birth. Reactivation of Notch signaling in the adult kidney could be due to the genetic activation of Notch signaling or kidney injury. Notch3 is a mammalian heterodimeric transmembrane receptor in the Notch gene family. Notch3 activation is significantly increased in various glomerular diseases, renal tubulointerstitial diseases, glomerular sclerosis, and renal fibrosis and mediates disease occurrence and development. Here, we discuss numerous recently published papers describing the role of Notch3 signaling in kidney disease.
Collapse
|
7
|
Abstract
Kidney diseases secondary to several pathogeneses affect millions of people worldwide and have become increasingly recognized as a global public health problem. Recent evidence suggests that cellular senescence plays an important role in the pathogenesis of different forms of renal damage, including acute and chronic kidney disease, and renal transplantation. Renal senescence involves cell cycle arrest and affects several cellular pathways, manifesting in downregulation of klotho, elevated expression of cyclin-dependent kinase inhibitors, cellular telomere shortening, and oxidative stress. Furthermore, senescent cells might induce kidney injury by paracrine release of inflammatory factors. Yet, cellular senescence may be renoprotective during development and in some models of renal diseases, reflecting the yin/yang duality of cellular senescence. This review provides an overview of the role of this emerging player in renal injury, with emphasis on new findings of cellular senescence.
Collapse
Affiliation(s)
- Yongxin Li
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (Y.L., L.O.L.).,Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, PR China (Y.L.)
| | - Lilach O Lerman
- From the Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (Y.L., L.O.L.)
| |
Collapse
|
8
|
Liu X, Du M, Wang Y, Liu S, Liu X. BMP9 overexpressing adipose-derived mesenchymal stem cells promote cartilage repair in osteoarthritis-affected knee joint via the Notch1/Jagged1 signaling pathway. Exp Ther Med 2018; 16:4623-4631. [PMID: 30542413 PMCID: PMC6257276 DOI: 10.3892/etm.2018.6754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OS) is a common disease in orthopedics. Although OS is known as an inflammation mediated by inflammatory cytokines; however, the mechanism is poorly understood. In the present study, the role of bone morphogenetic protein-9 (BMP9) was investigated in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). ADMSCs were transfected with BMP9. BMP9 mRNA expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Type II collagen and aggrecan expression was detected by western blotting and RT-qPCR. Mouse models of knee OS were established. Hematoxylin-eosin staining and toluidine blue staining were performed to observe changes in the OS-affected knee joint. After intra-articular injection of ADMSCs transfected with BMP9, intra-articular expression of type II collagen and aggrecan was detected by western blot analysis and RT-qPCR. After the Notch signaling pathway was inhibited in ADMSCs, ADMSCs were injected into the articular cavity. The expression of Notch signaling pathway-related proteins Notch1 and Jagged1 was detected by western blot analysis and RT-qPCR. BMP9 promoted chondrogenic differentiation of ADMSCs. After injection of BMP9 overexpressing ADMSCs into the articular space, type II collagen and aggrecan expression was increased. When the Notch signaling pathway of ADMSCs was inhibited, the ability of BMP9 overexpressing ADMSCs to repair the cartilage in the OS-affected knee joint was attenuated. These results demonstrate that upregulating BMP9 protein expression may promote the chondrogenic differentiation of ADMSCs. Intra-articular injection of ADMSCs contributes to cartilage repair in OS-affected knee joints through the Notch1/Jagged1 signaling pathway.
Collapse
Affiliation(s)
- Xinwei Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Mingchang Du
- Department of Orthopedics, Orthopedic Hospital of Shenyang, Shenyang, Liaoning 110000, P.R. China
| | - Yu Wang
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Songbo Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Xianmin Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
9
|
Cummings M, Arumanayagam ACS, Zhao P, Kannanganat S, Stuve O, Karandikar NJ, Eagar TN. Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS One 2018; 13:e0200752. [PMID: 30089166 PMCID: PMC6082653 DOI: 10.1371/journal.pone.0200752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) where pathology is thought to be regulated by autoreactive T cells of the Th1 and Th17 phenotype. In this study we sought to understand the functions of Presenilin 1 (PSEN1) in regulating T cell effector responses in the experimental autoimmune encephalomyelitis (EAE) murine model of MS. PSEN1 is the catalytic subunit of γ-secretase a multimolecular protease that mediates intramembranous proteolysis. γ-secretase is known to regulate several pathways of immune importance. Here we examine the effects of disrupting PSEN1 functions on EAE and T effector differentiation using small molecule inhibitors of γ-secretase (GSI) and T cell-specific conditional knockout mice (PSEN1 cKO). Surprisingly, blocking PSEN1 function by GSI treatment or PSEN1 cKO had little effect on the development or course of MOG35-55-induced EAE. In vivo GSI administration reduced the number of myelin antigen-specific T cells and suppressed Th1 and Th17 differentiation following immunization. In vitro, GSI treatment inhibited Th1 differentiation in neutral but not IL-12 polarizing conditions. Th17 differentiation was also suppressed by the presence of GSI in all conditions and GSI-treated Th17 T cells failed to induce EAE following adoptive transfer. PSEN cKO T cells showed reduced Th1 and Th17 differentiation. We conclude that γ-secretase and PSEN1-dependent signals are involved in T effector responses in vivo and potently regulate T effector differentiation in vitro, however, they are dispensable for EAE.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Amyloid Precursor Protein Secretases/metabolism
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Dibenzazepines/pharmacology
- Dibenzazepines/therapeutic use
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Interleukin-17/metabolism
- Interleukin-2/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Presenilin-1/deficiency
- Presenilin-1/genetics
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Matthew Cummings
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | | | - Picheng Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, United States of America
| | - Sunil Kannanganat
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, United States of America
| | - Olaf Stuve
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa, Iowa City, IA, United States of America
| | - Todd N. Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX, United States of America
| |
Collapse
|
10
|
Gremlin activates the Notch pathway linked to renal inflammation. Clin Sci (Lond) 2018; 132:1097-1115. [PMID: 29720422 DOI: 10.1042/cs20171553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Preclinical studies suggest that Gremlin participates in renal damage and could be a potential therapeutic target for human chronic kidney diseases. Inflammation is a common characteristic of progressive renal disease, and therefore novel anti-inflammatory therapeutic targets should be investigated. The Notch signaling pathway is involved in kidney development and is activated in human chronic kidney disease, but whether Gremlin regulates the Notch pathway has not been investigated. In cultured tubular cells, Gremlin up-regulated gene expression of several Notch pathway components, increased the production of the canonical ligand Jagged-1, and caused the nuclear translocation of active Notch-1 (N1ICD). In vivo administration of Gremlin into murine kidneys elicited Jagged-1 production, increased N1ICD nuclear levels, and up-regulated the gene expression of the Notch effectors hes-1 and hey-1 All these data clearly demonstrate that Gremlin activates the Notch pathway in the kidney. Notch inhibition using the γ-secretase inhibitor DAPT impaired renal inflammatory cell infiltration and proinflammatory cytokines overexpression in Gremlin-injected mice and in experimental models of renal injury. Moreover, Notch inhibition blocked Gremlin-induced activation of the canonical and noncanonical nuclear factor-κB (NF-κB) pathway, identifying an important mechanism involved in the anti-inflammatory actions of Notch inhibition. In conclusion, Gremlin activates the Notch pathway in the kidney and this is linked to NF-κB-mediated inflammation, supporting the hypothesis that Notch inhibition could be a potential anti-inflammatory strategy for renal diseases.
Collapse
|
11
|
Notch-mediated Sox9 + cell activation contributes to kidney repair after partial nephrectomy. Life Sci 2017; 193:104-109. [PMID: 29198839 DOI: 10.1016/j.lfs.2017.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
AIMS Partial nephrectomy is a surgical technique as an alternative for traditional radical nephrectomy. The advantage of partial nephrectomy technique is nephron-sparing, however, whether the remaining kidney tissue could regenerate the lost nephron is still unknown. The current work is to investigate the kidney tissue repair process and the related cellular and molecular mechanism. MAIN METHODS We used a novel unilateral partial nephrectomy mouse model to study kidney repair, and focused on a population of Sox9+ progenitor cells to study their pivotal role in the regenerative process. Kidney function after nephrectomy was measured using creatinine and urea nitrogen assay kit. Wound healing was assessed by Masson Trichrome Staining. Tissue regeneration was tested by Sox9+ cells immunofluorescence staining. The differentiation potential of Sox9+ cells were assessed by immunoanalysis with various tubular cell markers. Notch activation was determined by qPCR and Western blotting. KEY FINDINGS After partial nephrectomy, we found that massive Sox9+ cells emerged one day after the surgery and lasted for up to 20days. The Sox9+ cells had proliferative capacity and could give rise to epithelial cells of proximal tubule, Henle's loop, distal tubule, collecting duct, and the parietal layer of glomerulus. We also found that the activation of Sox9+ cells was mediated by Notch signaling pathway. SIGNIFICANCE The current study reveals that Notch-mediated Sox9+ cell activation can contribute to kidney tubule regeneration after unilateral partial nephrectomy in mice.
Collapse
|
12
|
Huang F, Ma W. The mechanism of blood concentrations of the Shenqi pill repairing injured epithelial cells of renal tubular in vitro. Exp Ther Med 2017; 14:246-250. [PMID: 28672921 PMCID: PMC5488601 DOI: 10.3892/etm.2017.4450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022] Open
Abstract
In the present study, we investigated the best blood concentration of the mechanism of Shenqi pill repairing the injured epithelial cells of renal tubular in vitro. First, the injured hypoxia/reoxygenation model of rat proximal renal tubular epithelial cell strain (NRK-52E) was established. The animals were divided randomly into control, model, low concentration (5 µg/ml), moderate concentration (10 µg/ml) and high concentration (20 µg/ml) groups. The apoptotic rate was measured with flow cytometry and Jag2/Notch2/hes1 mRNA, and the protein expression was measured for 1, 3 and 7 days. It was found that in comparison to the control group, the growth of each group was prolonged with time, the levels of apoptosis, and the Jag2/Notch2/hes1 mRNA and protein expression decreased. Furthermore, the levels of the apoptotic rate, Jag2/Notch2/hes1 mRNA and protein expression of the moderate concentration and high concentration groups were significantly lower than those of the model and low-dose groups at each time-point (P<0.05). In conclusion, the Shenqi Pill alleviates the damage of renal tubular epithelial cells by inhibiting the Jag2/Notch2/hes1 signaling pathway; suitable concentration such as 10–20 µg/ml can exert protective effect.
Collapse
Affiliation(s)
- Fei Huang
- Department of Nephrology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Wenfeng Ma
- Department of Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
13
|
Mazzinghi B, Romagnani P, Lazzeri E. Biologic modulation in renal regeneration. Expert Opin Biol Ther 2016; 16:1403-1415. [DOI: 10.1080/14712598.2016.1219336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|