1
|
Gao R, Zhan M, Ke S, Wu K, He G, Qi L, Liu X, Liu X, Wang L, Liu L. Potential risk factors for mild cognitive impairment among patients with type 2 diabetes experiencing hypoglycemia. Diabetes Res Clin Pract 2024; 207:111036. [PMID: 38049036 DOI: 10.1016/j.diabres.2023.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
AIMS This study examined the association between hypoglycemia and mild cognitive impairment (MCI) among patients with type 2 diabetes mellitus (T2DM) and identified risk factors for MCI in patients with hypoglycemia. METHODS In this retrospective study, 328 patients with T2DM were screened in 2019 and followed up in 2022. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA). The diagnosis of MCI was based on established criteria. Risk ratio (RR) with 95 % confidence intervals (CI) was calculated to estimate the risk of MCI. Univariate and multivariate logistic regression analyses were conducted to identify risk factors for MCI in those with hypoglycemia. RESULTS Patients with hypoglycemia had lower cognitive performance 3 years later. The RR of MCI was 2.221 (95 % CI 1.269-3.885). Multivariate logistic analysis showed that low grip strength, existing diabetic retinopathy (DR), and multiple hypoglycemia episodes were associated with higher odds of MCI in patients with hypoglycemia (adjusted odds ratio [OR] 0.909 [95 % CI 0.859-0.963]), 3.078 [95 % CI 1.158-12.358], and 4.642 [95 % CI 1.284-16.776], respectively, all P < 0.05). CONCLUSIONS Hypoglycemia increased MCI risk among patients with T2DM. Low grip strength, DR, and multiple hypoglycemia episodes may be potential risk factors for hypoglycemia-associated MCI.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Menglan Zhan
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guanlian He
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liqin Qi
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Cao Y, Yang Y, Liu L, Ma J. Analysis of risk factors of neonatal hypoglycemia and its correlation with blood glucose control of gestational diabetes mellitus: A retrospective study. Medicine (Baltimore) 2023; 102:e34619. [PMID: 37657063 PMCID: PMC10476708 DOI: 10.1097/md.0000000000034619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 09/03/2023] Open
Abstract
This study aimed to investigate the risk factors associated with neonatal hypoglycemia and its correlation with blood glucose control in patients with gestational diabetes mellitus (GDM). This study was a retrospective study. 880 pregnant women with GDM and their newborns were hospitalized from January 2018 to December 2022 in our hospital. The clinical information of GDM pregnant women and their newborns were reviewed and the hemoglobin A1c (HbA1c) values measured within 1 week before delivery were collected. According to the occurrence of neonatal hypoglycemia, which was divided into the control and observation groups. Logistic regression model was used to estimate the potential factors associated with neonatal hypoglycemia. The association between HbA1c of pregnant women before delivery and abnormal glucose metabolism in newborns was examined using spearman correlation analysis. A total of 104 cases of hypoglycemia occurred in neonates delivered by 880 GDM women and the incidence of neonatal hypoglycemia was 11.82%. There were significant differences in pre-pregnancy overweight or obesity, delivery mode, maternal blood sugar control effect and neonatal feeding standard between the 2 groups of GDM women (P < .05). Pre-pregnancy overweight or obesity, poor blood sugar control in GDM women, and improper neonatal feeding were risk factors for neonatal hypoglycemia. The results of logistic regression analysis showed that abnormal glucose metabolism in newborn (odds ratio [OR]: 2.43, 95% confidence interval [CI]: 1.12-4.73) and neonatal hypoglycemia (OR: 3.04, 95% CI: 1.33-5.79) were a risk factor. We also conducted the logistic analysis to evaluate the correlation between HbA1c before delivery and abnormal glucose metabolism in newborns of pregnant women with GDM through adjusting some potential factors. The results were still significant in the abnormal glucose metabolism in newborn (OR: 2.84, 95% CI: 1.23-6.63) and neonatal hypoglycemia (OR: 3.64, 95% CI: 1.46-8.18). Overweight or obesity of GDM parturient before pregnancy, poor blood glucose control of GDM parturient and improper feeding of newborns are all risk factors for neonatal hypoglycemia. HbA1c before delivery has a certain predictive value for abnormal glucose metabolism in newborns.
Collapse
Affiliation(s)
- Yu Cao
- Department of Obstetrics Staff Nurse, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yun Yang
- Department of Obstetrics Staff Nurse, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Liu
- Department of Obstetrics Staff Nurse, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Ma
- Department of Staff Nurse of Children’s Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
3
|
Ennis K, Felt B, Georgieff MK, Rao R. Early-Life Iron Deficiency Alters Glucose Transporter-1 Expression in the Adult Rodent Hippocampus. J Nutr 2019; 149:1660-1666. [PMID: 31162576 PMCID: PMC6736205 DOI: 10.1093/jn/nxz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early-life iron deficiency (ID) impairs hippocampal energy production. Whether there are changes in glucose transporter (GLUT) expression is not known. OBJECTIVE The aim of this study was to investigate whether early-life ID and the treatment iron dose alter brain regional GLUT expression in adult rats and mice. METHODS In Study 1, ID was induced in male and female Sprague Dawley rat pups by feeding dams a 3-mg/kg iron diet during gestation and the first postnatal week, followed by treatment using low-iron [3-10 mg/kg; formerly iron-deficient (FID)-10 group], standard-iron (40-mg/kg; FID-40 group), or high-iron (400-mg/kg; FID-400 group) diets until weaning. The control group received the 40 mg/kg iron diet. GLUT1, GLUT3, hypoxia-inducible factor (HIF)-1α, and prolyl-hydroxylase-2 (PHD2) mRNA and protein expression in the cerebral cortex, hippocampus, striatum, cerebellum, and hypothalamus were determined at adulthood. In Study 2, the role of hippocampal ID in GLUT expression was examined by comparing the Glut1, Glut3, Hif1α, and Phd2 mRNA expression in adult male and female wild-type (WT) and nonanemic hippocampal iron-deficient and iron-replete dominant negative transferrin receptor 1 (DNTfR1-/-) transgenic mice. RESULTS In Study 1, Glut1, Glut3, and Hif1α mRNA, and GLUT1 55-kDa protein expression was upregulated 20-33% in the hippocampus of the FID-10 group but not the FID-40 group, relative to the control group. Hippocampal Glut1 mRNA (-39%) and GLUT1 protein (-30%) expression was suppressed in the FID-400 group, relative to the control group. Glut1 and Glut3 mRNA expression was not altered in the other brain regions in the 3 FID groups. In Study 2, hippocampal Glut1 (+14%) and Hif1α (+147%) expression was upregulated in the iron-deficient DNTfR1-/- mice, but not in the iron-replete DNTfR1-/- mice, relative to the WT mice (P < 0.05, all). CONCLUSIONS Early-life ID is associated with altered hippocampal GLUT1 expression in adult rodents. The mouse study suggests that tissue ID is potentially responsible.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Address correspondence to RR (e-mail: )
| |
Collapse
|
4
|
Languren G, Montiel T, Ramírez-Lugo L, Balderas I, Sánchez-Chávez G, Sotres-Bayón F, Bermúdez-Rattoni F, Massieu L. Recurrent moderate hypoglycemia exacerbates oxidative damage and neuronal death leading to cognitive dysfunction after the hypoglycemic coma. J Cereb Blood Flow Metab 2019; 39:808-821. [PMID: 29047291 PMCID: PMC6501509 DOI: 10.1177/0271678x17733640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Moderate recurrent hypoglycemia (RH) is frequent in Type 1 diabetes mellitus (TIDM) patients who are under intensive insulin therapy increasing the risk for severe hypoglycemia (SH). The consequences of RH are not well understood and its repercussions on neuronal damage and cognitive function after a subsequent episode of SH have been poorly investigated. In the current study, we have addressed this question and observed that previous RH during seven consecutive days exacerbated oxidative damage and neuronal death induced by a subsequent episode of SH accompanied by a short period of coma, in the parietal cortex, the striatum and mainly in the hippocampus. These changes correlated with a severe decrease in reduced glutathione content (GSH), and a significant spatial and contextual memory deficit. Administration of the antioxidant, N-acetyl-L-cysteine, (NAC) reduced neuronal death and prevented cognitive impairment. These results demonstrate that previous RH enhances brain vulnerability to acute hypoglycemia and suggests that this effect is mediated by the decline in the antioxidant defense and oxidative damage. The present results highlight the importance of an adequate control of moderate hypoglycemic episodes in TIDM.
Collapse
Affiliation(s)
- Gabriela Languren
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Teresa Montiel
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Leticia Ramírez-Lugo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Gustavo Sánchez-Chávez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Francisco Sotres-Bayón
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - Lourdes Massieu
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
5
|
Ennis K, Lusczek E, Rao R. Characterization of the concurrent metabolic changes in brain and plasma during insulin-induced moderate hypoglycemia using 1H NMR spectroscopy in juvenile rats. Neurosci Lett 2017. [PMID: 28627374 DOI: 10.1016/j.neulet.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R2=0.92, Q2=0.31; plasma: R2=0.95, Q2=0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R2=0.86; hypoglycemia group: R2=0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Mayo Mail Code 39, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Elizabeth Lusczek
- Department of Surgery, University of Minnesota, Mayo Mail Code 195, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Mayo Mail Code 39, 420 Delaware Street, SE, Minneapolis, MN 55455, USA; Center for Neurobehavioral Development, University of Minnesota, Mayo Mail Code 39, 420 Delaware Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|