1
|
Yu X, Xu D, Hu J, Yu Y, Wang L, Jiang B, Zhang M. Exploring the Impact of Hemoglobin on Cerebral Blood Flow in Arterial Territories and Surgical Outcomes: Potential Implications for Moyamoya Disease Treatment. J Am Heart Assoc 2024; 13:e035387. [PMID: 39344645 DOI: 10.1161/jaha.124.035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Changes in levels of hemoglobin would result in alterations of cerebral blood flow (CBF). However, the impact of hemoglobin on CBF in moyamoya disease (MMD) remains largely unknown. This study sought to determine whether CBF would be influenced by hemoglobin before surgical revascularization and to analyze the relationships between hemoglobin and CBF with clinical outcome after surgery in patients with MMD. METHODS AND RESULTS We prospectively enrolled adult patients with MMD undergoing surgical revascularization between June 2020 and December 2022. Preoperative CBF was measured in the territories of anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA, respectively) using 3-dimensional pseudo-continuous arterial spin labeling magnetic resonance imaging. Clinical outcome at 1 year after surgery was evaluated using the modified Rankin Scale. A total of 60 patients with MMD were included, with 25% (n=15) experiencing unfavorable outcomes. Patients with MMD exhibited lower CBF (ACA: P=0.007; MCA: P<0.001; PCA: P=0.014), compared with healthy controls (n=40). Hemoglobin was negatively and significantly associated with CBF (ACA: β=-0.45, P<0.001; MCA: β=-0.38, P<0.001; PCA: β=-0.54, P<0.001). CBF rather than hemoglobin was significantly related with clinical outcome (ACA: P<0.001; MCA: P<0.001; PCA: P=0.001), and CBF showed high discrimination in predicting clinical outcome (ACA: area under the curve, 0.84; MCA: area under the curve, 0.84; PCA: area under the curve, 0.80). CONCLUSIONS Our findings demonstrate that hemoglobin significantly influences CBF, and CBF has a high predictive value for clinical outcome in MMD. The optimal hemoglobin level before surgical revascularization should be further investigated.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Duo Xu
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Junwen Hu
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yannan Yu
- Department of Radiology University of California San Francisco San Francisco CA
| | - Lin Wang
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Biao Jiang
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Minming Zhang
- Department of Radiology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
2
|
Kuzan A, Kozak-Sykała A, Fiedorowicz A, Kałas W, Strządała L, Gamian A. Advanced Glycation End-Products in Blood Serum-Novel Ischemic Stroke Risk Factors? Implication for Diabetic Patients. J Clin Med 2024; 13:443. [PMID: 38256577 PMCID: PMC10816329 DOI: 10.3390/jcm13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
New predictors of ischemic incidents are constantly sought since they raise the awareness of patients and their doctors of stroke occurrence. The goal was to verify whether Advanced Glycation End Products (AGEs), in particular AGE10, could be one of them. The AGE10 measurement was conducted using a non-commercial ELISA assay in the blood serum of neurological patients without cerebrovascular event (n = 24), those with transient brain attack (TIA) (n = 17), and severe ischemic stroke (n = 35). Twice as many of the people with TIA or severe stroke presented high AGE10 serum concentrations compared to the patients with other neurological conditions (χ2 = 8.2, p = 0.004; χ2 = 8.0, p = 0.005, respectively). The risk of ischemic incident was significantly risen in people with higher levels of AGE10 (OR = 6.5, CI95%: 1.7-24.8; OR = 4.7, CI95%: 1.5-14.5 for TIA and stroke subjects, respectively). We observed a positive correlation (r = 0.40) between high AGE10 levels and diabetes. Moreover, all the diabetic patients that had a high AGE10 content experienced either a severe ischemic stroke or TIA. The patients with high levels of AGE10 exhibited higher grades of disability assessed by the NIHSS scale (r = 0.35). AGE10 can be considered a new biomarker of ischemic stroke risk. Patients with diabetes presenting high AGE10 levels are particularly prone to the occurrence of cerebrovascular incidents.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Kozak-Sykała
- Neurology and Stroke Department, Independent Public Healthcare Centre, Jankowski Regional Hospital in Przeworsk, Szpitalna 16, 37-200 Przeworsk, Poland;
| | - Anna Fiedorowicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Wojciech Kałas
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Leon Strządała
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland (W.K.); (L.S.); (A.G.)
| |
Collapse
|
3
|
Jiang G, Wang Y, Wang L, Chen M, Li W. The mediating effect of depression on new-onset stroke in diabetic population: Evidence from the China health and retirement longitudinal study. J Affect Disord 2023; 321:208-216. [PMID: 36349648 DOI: 10.1016/j.jad.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Diabetes has a high incidence in China, which may cause stroke and depression. However, the relationship between diabetes and the incidence of new-onset stroke and depression has not been fully studied. METHODS The data from the China Longitudinal Study on Health and Retirement (CHARLS) from 2013 to 2018 were used. A total of 8530 respondents aged ≥45 years old were included in the follow-up study. Logistic regression model, Cox regression, and Mediation analyses were used to explore the association between diabetes, depression, and new-onset stroke. RESULTS The depression score of patients with diabetes history was higher (HR,95%CI = 1.02, 1.01-1.04) and were more likely to experience new-onset stroke events (HR, 95%CI = 1.046, 1.02-1.07). With a history of hypertension (HR,95%CI = 1.747, 1.381-2.208), older (HR,95%CI = 1.033, 1.020-1.046) with high BMI (HR,95%CI = 1.056, 1.027-1.086) have a high risk of new-onset stroke. In the combined subgroup analysis, the incidence of new-onset stroke in the subgroup with diabetes depression was higher than in others. The mediating effect of depression on new-onset stroke events in diabetic patients is more pronounced in the medium to long term (>3 years) after adjusting covariates. LIMITATIONS We defined new-onset stroke by patient self-report, there might be some memory bias. In addition, new-onset stroke was not classified in the CHARLS questionnaire, which would hinder us to evaluate the mediating effect of depression on different types of new-onset stroke. CONCLUSION Our results showed that depression has a partial mediating effect between diabetes and new-onset stroke in the middle-aged and elderly population in China.
Collapse
Affiliation(s)
- Gege Jiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Yaoling Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Liping Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Minfang Chen
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China.
| |
Collapse
|
4
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Kadir RRA, Alwjwaj M, McCarthy Z, Bayraktutan U. Therapeutic hypothermia augments the restorative effects of PKC-β and Nox2 inhibition on an in vitro model of human blood-brain barrier. Metab Brain Dis 2021; 36:1817-1832. [PMID: 34398388 PMCID: PMC8437893 DOI: 10.1007/s11011-021-00810-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
To investigate whether therapeutic hypothermia augments the restorative impact of protein kinase C-β (PKC-β) and Nox2 inhibition on an in vitro model of human blood-brain barrier (BBB). Cells cultured in normoglycaemic (5.5 mM) or hyperglycaemic (25 mM, 6 to 120 h) conditions were treated with therapeutic hypothermia (35 °C) in the absence or presence of a PKC-β inhibitor (LY333531, 0.05 μM) or a Nox2 inhibitor (gp91ds-tat, 50 μM). BBB was established by co-culture of human brain microvascular endothelial cells (HBMECs) with astrocytes (HAs) and pericytes. BBB integrity and function were assessed via transendothelial electrical resistance (TEER) and paracellular flux of sodium fluorescein (NaF, 376 Da). Nox activity (lucigenin assay), superoxide anion production (cytochrome-C reduction assay), cellular proliferative capacity (wound scratch assay) and actin cytoskeletal formation (rhodamine-phalloidin staining) were assessed both in HBMECs and HAs using the specific methodologies indicated in brackets. Therapeutic hypothermia augmented the protective effects of PKC-β or Nox2 inhibition on BBB integrity and function in experimental setting of hyperglycaemia, as evidenced by increases in TEER and concomitant decreases in paracellular flux of NaF. The combinatory approaches were more effective in repairing physical damage exerted on HBMEC and HA monolayers by wound scratch and in decreasing Nox activity and superoxide anion production compared to sole treatment regimen with either agent. Similarly, the combinatory approaches were more effective in suppressing actin stress fibre formation and maintaining normal cytoskeletal structure. Therapeutic hypothermia augments the cerebral barrier-restorative capacity of agents specifically targeting PKC-β or Nox2 pathways.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Zoe McCarthy
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
6
|
Guo Z, Jia J, Tu Y, Jin C, Guo C, Song F, Wu X, Bao H, Fan W. Altered Jagged1-Notch1 Signaling in Enhanced Dysfunctional Neovascularization and Delayed Angiogenesis After Ischemic Stroke in HFD/STZ Induced Type 2 Diabetes Rats. Front Physiol 2021; 12:687947. [PMID: 34305641 PMCID: PMC8297620 DOI: 10.3389/fphys.2021.687947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes exacerbates brain damage in cerebral ischemic stroke. Our previous study has demonstrated that after cerebral ischemia, type 2 diabetes rats displayed worse neurological outcomes, larger cerebral infarction and severer blood-brain barrier disruption. However, our knowledge of the mechanisms of how diabetes impacts the cerebrovascular repair process is limited. This study was aimed to characterize structural alterations and potential mechanisms in brain microvessels before and after ischemic stroke in type 2 diabetic rats treated with high-fat diet and streptozotocin (HFD/STZ). Furtherly, we tested our hypothesis that dysregulated intercellular Jagged1-Notch1 signaling was involved in the dysfunctional cerebral neovascularization both before and after ischemic stroke in HFD/STZ rats. In our study, we found increased yet dysfunctional neovascularization with activated Jagged1-Notch1 signaling in the cerebrovasculature before cerebral ischemia in HFD/STZ rats compared with non-diabetic rats. Furthermore, we observed delayed angiogenesis as well as suppressed Jagged1-Notch1 signaling after ischemic stroke. Our results elucidate the potential mechanisms underlying diabetes-related cerebral microvasculature dysfunction after ischemic stroke.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Jia
- Department of Neurology, Shanghai Xuhui District Central Hospital, Shanghai, China
| | - Yanling Tu
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chang Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wang LQ, Zheng YY, Zhou HJ, Zhang XX, Wu P, Zhu SM. LncRNA-Fendrr protects against the ubiquitination and degradation of NLRC4 protein through HERC2 to regulate the pyroptosis of microglia. Mol Med 2021; 27:39. [PMID: 33858325 PMCID: PMC8048261 DOI: 10.1186/s10020-021-00299-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Targeted inhibition of inflammatory response can reduce diabetic cerebral ischemia-reperfusion (I/R) injure. Pyroptosis is characterized by caspase-1 dependence and the release of a large number of pro-inflammatory factors. LncRNA-Fendrr is associated with a variety of diseases, but Fendrr has not been studied in diabetic cerebral I/R. NLR-family CARD-containing protein 4 (NLRC4) regulate the pyroptosis of microglia cells. This study was designed to investigate whether Fendrr is involved in the effects of diabetic cerebral I/R injury. METHODS The diabetic brain I/R model in mice was constructed. Mouse microglia cell line BV-2 cells were exposed to high glucose followed by hypoxia/reoxygenation (H/R). Fendrr and some pyroptosis-associated proteins were detected by qRT-PCR, western blot or ELISA. HE staining was used to detect pathological changes. Microglia pyroptosis was detected by TUNEL staining. RNA pull-down and RNA Immunoprecipitation were used to detect binding of Fendrr to HERC2 (E3 ubiquitin ligase), and CO-IP detected binding of HERC2 to NLRC4. The ubiquitination of NLRC4 was detected by ubiquitination experiments. RESULTS Fendrr was significantly increased in the diabetic cerebral I/R model, and NLRC4 inflammatory complex and pyroptosis mediated inflammatory factors were increased. NLRC4 and inflammatory cytokines associated with pyroptosis were decreased in the high glucose-treated hypoxia/reoxygenation (H/R)-induced microglia after Fendrr knockdown. Fendrr bound to HERC2 protein, and HERC2 bound to NLRC4. Meanwhile, Fendrr could inhibit the ubiquitination of NLRC4, HERC2 promoted the ubiquitination of NLRC4 protein. Moreover, the effect of Fendrr overexpression in the diabetic cerebral I/R model of microglia can be reversed by HERC2 overexpression. CONCLUSION Fendrr can protect against the ubiquitination and degradation of NLRC4 protein through E3 ubiquitin ligase HERC2, thereby accelerating the pyroptosis of microglia.
Collapse
Affiliation(s)
- Li-Qing Wang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yue-Ying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Heng-Jun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Xiong-Xin Zhang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Pin Wu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Sheng-Mei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
8
|
van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol 2020; 8:325-336. [PMID: 32135131 DOI: 10.1016/s2213-8587(19)30405-x] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Adults with type 2 diabetes are at an increased risk of developing certain brain or mental disorders, including stroke, dementia, and depression. Although these disorders are not usually considered classic microvascular complications of diabetes, evidence is growing that microvascular dysfunction is one of the key underlying mechanisms. Microvascular dysfunction is a widespread phenomenon in people with diabetes, including effects on the brain. Cerebral microvascular dysfunction is also apparent in adults with prediabetes, suggesting that cerebral microvascular disease processes start before the onset of diabetes. The microvasculature is involved in the regulation of many cerebral processes that when impaired predispose to lacunar and haemorrhagic stroke, cognitive dysfunction, and depression. Main drivers of diabetes-related cerebral microvascular dysfunction are hyperglycaemia, obesity and insulin resistance, and hypertension. Increasing amounts of data from observational studies suggest that diabetes-related microvascular dysfunction is associated with a higher risk of stroke, cognitive dysfunction, and depression. Cerebral outcomes in diabetes might be improved following treatments targeting the pathways through which diabetes damages the microcirculation. These treatments might include drugs that reduce dicarbonyl compounds, augment cerebral insulin signalling, or improve blood-brain barrier permeability and cerebral vasoreactivity.
Collapse
Affiliation(s)
- Thomas T van Sloten
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sanaz Sedaghat
- Department of Preventive Medicine and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mercedes R Carnethon
- Department of Preventive Medicine and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Coen D A Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands.
| |
Collapse
|
9
|
Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, Wang Y, Deng Z, Chen C, Hu X, Peng L, Qiu W, Lu Z. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 2019; 33:4376-4387. [PMID: 30694693 DOI: 10.1096/fj.201801595rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Astrocytes mediate the destruction of the blood-brain barrier (BBB) during ischemic stroke (IS). IL-9 is a pleiotropic cytokine that we previously found to be highly expressed in peripheral blood mononuclear cells from patients with IS, and the presence of IL-9 receptors on astrocytes has been reported in the literature. Here, we detected the effect of IL-9 on astrocytes using an anti-IL-9-neutralizing antibody to treat rats with experimental stroke. Supernatants from astrocytes treated with or without oxygen-glucose deprivation and/or IL-9 were incubated with bEnd.3 cell monolayers after blocking the IL-9 receptor on the endothelium. Immunofluorescence staining and Western blot analyses were conducted to observe the change in tight junction proteins (TJPs) in bEnd.3 cells as well as the level of VEGF-A and possible signal pathways in astrocytes. We also applied middle cerebral artery occlusion (MCAO) models to determine the effect of anti-IL-9-neutralizing antibodies on IS. As a result, astrocyte-conditioned medium treated with IL-9 aggravated the disruption of the BBB accomplished by the degradation of TJPs in endothelial cells. In addition, IL-9 increased the level of VEGF-A in astrocytes, and blocking the effect of VEGF-A reversed the breakdown of the BBB. In the MCAO model, anti-IL-9-neutralizing antibody reduced the infarct volume and BBB destruction. Mechanistically, the anti-IL-9-neutralizing antibody repaired the damaged TJPs (zonula occludens 1, occludin, and claudin-5) and induced a decrease in VEGF-A expression in ischemic lateral brain tissue. In contrast, a local injection of recombinant murine IL-9 to the brain resulted in a marked up-regulation of VEGF-A in the striatum. In conclusion, anti-IL-9-neutralizing antibody can reduce the severity of IS partially by alleviating the destruction of the BBB via down-regulation of astrocyte-derived VEGF-A. This finding suggests that targeting IL-9 or VEGF-A could provide a new direction for the treatment of IS.-Tan, S., Shan, Y., Lin, Y., Liao, S., Zhang, B., Zeng, Q., Wang, Y., Deng, Z., Chen, C., Hu, X., Peng, L., Qiu, W., Lu, Z. Neutralization of IL-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A.
Collapse
Affiliation(s)
- Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilong Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinyao Lin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siyuan Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Zeng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Setyopranoto I, Malueka RG, Panggabean AS, Widyadharma IPE, Sadewa AH, Lamsudin R, Wibowo S. Association between Increased Matrix Metalloproteinase-9 (MMP-9) Levels with Hyperglycaemia Incidence in Acute Ischemic Stroke Patients. Open Access Maced J Med Sci 2018; 6:2067-2072. [PMID: 30559862 PMCID: PMC6290450 DOI: 10.3889/oamjms.2018.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND: Hyperglycemia is common in acute stroke patients. Hyperglycemia can induce the production of reactive oxygen species, causing increased activity of matrix metalloproteinase-9 (MMP-9). AIM: This study aimed to determine an association between the increased levels of MMP-9 and the incidence of hyperglycemia in acute ischemic stroke patients. METHODS: This is a case-control study. Acute ischemic stroke patients admitted to the Stroke Unit of a reference hospital in Yogyakarta, Indonesia was divided into the hyperglycemic and non-hyperglycemic group. Demographic and clinical characteristics of each subject were recorded, and blood levels of MMP-9 were measured. Seventy-one patients were recruited, 40 subjects in the hyperglycemic group and 31 subjects in the non-hyperglycemic group. RESULTS: The median levels of blood MMP-9 level in the hyperglycemic and non-hyperglycemic group were 974.37 and 748.48 ng/mL, respectively, and the difference was statistically not significant (95% CI, 191.24-2849.53; p = 0.07). When the calculated cut-off point of 600.99 ng/mL was used, the proportion of patients with higher MMP-9 levels was significantly more in the hyperglycemic group compared with the ones in the non-hyperglycemic group (82.5% and 54.8%, respectively; OR = 3.88; p = 0.011). CONCLUSION: We concluded that the proportion of patients with MMP-9 level >600.99 ng/mL was significantly higher in acute ischemic stroke patients with hyperglycemia.
Collapse
Affiliation(s)
- Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - I Putu Eka Widyadharma
- Department of Neurology, Faculty of Medicine, Udayana University and Sanglah General Hospital, Bali, Indonesia
| | - Ahmad Hamim Sadewa
- Department of Biochemistry, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rusdi Lamsudin
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Samekto Wibowo
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Lin Z, Lin H, Li W, Huang Y, Dai H. Complement Component C3 Promotes Cerebral Ischemia/Reperfusion Injury Mediated by TLR2/NFκB Activation in Diabetic Mice. Neurochem Res 2018; 43:1599-1607. [PMID: 29948726 DOI: 10.1007/s11064-018-2574-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Complement component C3 (C3), a key factor in the complement system, is heavily involved in various inflammation-associated diseases. However, it remains obscure for its role in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury in diabetes. A transient middle cerebral artery occlusion (tMCAO) model was used for cerebral I/R injury in streptozotocin-induced diabetic mice. Cerebral infarct volume and neurological function were measured at different times of reperfusion. Complement C3 was measured by ELISA and western blotting. It was observed that complement C3 expression was increased in cerebral I/R injury of diabetic mice, whereas complement C3 deficiency abrogated the activation and injury. Furthermore, activating complement C3 promotes TLR2/NFκB activation after I/R injury in diabetic mice, which is inhibited by of the silencing of TLR2. Taken together, our data demonstrate that complement C3 promotes cerebral I/R injury via the TLR2/NFκB pathway in diabetic mice, and regulating the complement C3/TLR2/NFκB pathway may be a novel target for therapeutic intervention in diabetic stroke.
Collapse
Affiliation(s)
- Zheng Lin
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haoran Lin
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wenlu Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuwen Huang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 575] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
13
|
Inhibition of Endoplasmic Reticulum Stress Preserves the Integrity of Blood-Spinal Cord Barrier in Diabetic Rats Subjected to Spinal Cord Injury. Sci Rep 2017; 7:7661. [PMID: 28794417 PMCID: PMC5550423 DOI: 10.1038/s41598-017-08052-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
The blood-spinal cord barrier (BSCB) plays significance roles in recovery following spinal cord injury (SCI), and diabetes mellitus (DM) impairs endothelial cell function and integrity of BSCS. Endoplasmic reticulum (ER) stress occurs in the early stages of SCI and affects prognosis and cell survival. However, the relationship between ER stress and the integrity of BSCB in diabetic rats after SCI remains unclear. Here we observed that diabetic rats showed increased extravasation of Evans Blue (EB) dye, and loss of endothelial cells and pericytes 1 day after SCI compared to non-diabetic rats. Diabetes was also shown to induce activation of ER stress. Similar effects were observed in human brain microvascular endothelial cells. 4-phenylbutyric acid (4-PBA), an ER stress inhibitor lowered the adverse effect of diabetes on SCI, reduced EB dye extravasation, and limited the loss of endothelial cells and pericytes. Moreover, 4-PBA treatment partially reversed the degradation of tight junction and adherens junction both in vivo and in vitro. In conclusion, diabetes exacerbates the disruption of BSCB after SCI via inducing ER stress, and inhibition of ER stress by 4-PBA may play a beneficial role on the integrity of BSCB in diabetic SCI rats, leading to improved prognosis.
Collapse
|
14
|
Xu Y, Zhou H, Zhu Q. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Front Aging Neurosci 2017; 9:106. [PMID: 28496408 PMCID: PMC5406474 DOI: 10.3389/fnagi.2017.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE). With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.
Collapse
Affiliation(s)
- Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau.,Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney DiseasesGuangzhou, China
| |
Collapse
|
15
|
The role of actin depolymerizing factor in advanced glycation endproducts-induced impairment in mouse brain microvascular endothelial cells. Mol Cell Biochem 2017; 433:103-112. [DOI: 10.1007/s11010-017-3019-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
|
16
|
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide "insight" into cortical pharmacology and disease. Pharmacol Ther 2017; 175:151-177. [PMID: 28174096 DOI: 10.1016/j.pharmthera.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The retina is an easily accessible out-pouching of the central nervous system (CNS) and thus lends itself to being a biomarker of the brain. More specifically, the presence of neuronal, vascular and blood-neural barrier parallels in the eye and brain coupled with fast and inexpensive methods to quantify retinal changes make ocular biomarkers an attractive option. This includes its utility as a biomarker for a number of cerebrovascular diseases as well as a drug pharmacology and safety biomarker for the CNS. It is a rapidly emerging field, with some areas well established, such as stroke risk and multiple sclerosis, whereas others are still in development (Alzheimer's, Parkinson's, psychological disease and cortical diabetic dysfunction). The current applications and future potential of retinal biomarkers, including potential ways to improve their sensitivity and specificity are discussed. This review summarises the existing literature and provides a perspective on the strength of current retinal biomarkers and their future potential.
Collapse
Affiliation(s)
- Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Shajan Velaedan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Magnus Ivarsson
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
17
|
Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res 2016; 112:429-42. [PMID: 27496869 DOI: 10.1093/cvr/cvw194] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 12/17/2022] Open
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) is a key regulator of low-density lipoprotein receptor levels and LDL-cholesterol levels. Loss-of-function mutations in PCSK9 gene are associated with hypocholesterolaemia and protection against cardiovascular disease, identifying PCSK9 inhibition as a valid therapeutic approach to manage hypercholesterolaemia and related diseases. Although PCSK9 is expressed mainly in the liver, it is present also in other tissues and organs with specific functions, raising the question of whether a pharmacological inhibition of PCSK9 to treat hypercholesterolaemia and associated cardiovascular diseases might be helpful or deleterious in non-hepatic tissues. For example, PCSK9 is expressed in the vascular wall, in the kidneys, and in the brain, where it was proposed to play a role in development, neurocognitive process, and neuronal apoptosis. A link between PCSK9 and immunity was also proposed as both sepsis and viral infections are differentially affected in the presence or absence of PCSK9. Despite the increasing number of observations, the debate on the exact roles of PCSK9 in extrahepatic tissues is still ongoing, and as very effective drugs that inhibit PCSK9 have become available to the clinician, a better understanding of the biological roles of PCSK9 is warranted.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Hagai Tavori
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy IRCCS Multimedica, Milan, Italy
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy IRCCS Multimedica, Milan, Italy
| |
Collapse
|