1
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
2
|
Specjalski K, Maciejewska A, Romantowski J, Pawłowski R, Jassem E, Niedoszytko M. miRNA profiles change during grass pollen immunotherapy irrespective of clinical outcome. Immunotherapy 2022; 14:433-444. [DOI: 10.2217/imt-2021-0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Subcutaneous immunotherapy (SCIT) is widely used in the treatment of allergic rhinitis (AR). This study aimed to determine the expression of 48 miRNAs in patients with AR undergoing grass pollen SCIT and investigate relations with clinical outcomes. Methodology: Expression of selected miRNAs was determined using RT-PCR in the full blood of 16 patients with AR and seven healthy controls. Results: miR-136, miR-208 and miR-190 were upregulated in the AR group. After 6 months of SCIT, significant downregulation of some proinflammatory miRNAs and upregulation of several miRNAs regulating Th1/Th2 balance were found. No differences were found between good and poor responders. Conclusion: miRNAs may play a regulatory role in SCIT, leading to tolerance induction.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Agnieszka Maciejewska
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, Gdansk, 80-208, Poland
| | - Jan Romantowski
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Ryszard Pawłowski
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, Gdansk, 80-208, Poland
| | - Ewa Jassem
- Department of Pneumonology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, ul. Smoluchowskiego 17, Gdansk, 80-952, Poland
| |
Collapse
|
3
|
Liu F, Dong Z, Lin Y, Yang H, Wang P, Zhang Y. MicroRNA‑502‑3p promotes Mycobacterium tuberculosis survival in macrophages by modulating the inflammatory response by targeting ROCK1. Mol Med Rep 2021; 24:753. [PMID: 34476503 PMCID: PMC8436224 DOI: 10.3892/mmr.2021.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/29/2021] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M. tuberculosis) infection and has the highest mortality rate of any single infectious disease worldwide. The aim of the present study was to investigate the function of microRNA (miR)-502-3p in M. tuberculosis-infected macrophages. The Gene Expression Omnibus database was used to analyze miR-502-3p expression in patients with TB and healthy individuals. THP-1 and RAW 264.7 cells were transfected with miR-502-3p mimic, miR-502-3p inhibitor, pcDNA3.1-ROCK1 or their negative controls. The expression levels of miR-502-3p and inflammatory cytokines were evaluated using reverse transcription-quantitative PCR. The colony-forming unit assay was performed to assess the survival of M. tuberculosis in macrophages, and Toll-like receptor (TLR)4/NF-κB signaling pathway-associated protein expression levels were detected by western blotting. The nuclear translocation of NF-κB p65 was detected via immunocytochemistry. TargetScan was used to predict the binding sites between miR-502-3p and ROCK1. The interaction between miR-502-3p and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1) was confirmed using a dual-luciferase reporter assay; ROCK1 was demonstrated to be a direct target gene of miR-502-3p. Results from the present study demonstrated that miR-502-3p expression was significantly increased during M. tuberculosis infection in macrophages. Upregulation of miR-502-3p expression levels significantly enhanced the survival of intracellular M. tuberculosis. IL-6, TNF-α, and IL-1β mRNA expression levels were significantly upregulated during M. tuberculosis infection but were downregulated by miR-502-3p overexpression. Moreover, miR-502-3p mimics transfection significantly downregulated TLR4/NF-κB signaling pathway-associated protein expression and significantly reduced nuclear transcription of NF-κB in M. tuberculosis-infected macrophages. ROCK1 overexpression reversed the miR-502-3p inhibitory effect on cytokine production in M. tuberculosis-infected macrophages. In conclusion, miR-502-3p/ROCK1 may serve an anti-inflammatory role and may improve the survival of M. tuberculosis within macrophages, which may provide a promising therapeutic target for TB.
Collapse
Affiliation(s)
- Fang Liu
- Respiratory Endoscopy Room, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Zhen Dong
- East Medical District Office, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Yuefu Lin
- Department of Prevention, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Pingping Wang
- Rehabilitation Department, Shandong Coal Linyi Hot Spring Sanatorium, Linyi, Shandong 276034, P.R. China
| | - Yongxia Zhang
- Emergency Department, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| |
Collapse
|
4
|
Elnady HG, Sherif LS, Kholoussi NM, Ali Azzam M, Foda AR, Helwa I, Sabry RN, Eissa E, Fahmy RF. Aberrant Expression of Immune-related MicroRNAs in Pediatric Patients with Asthma. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:246-255. [PMID: 33688482 PMCID: PMC7936071 DOI: 10.22088/ijmcm.bums.9.4.246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have been implicated as regulatory molecules that could play a considerable role in the pathogenesis of different diseases including asthma. This work aims at exploring the role of miR-146a and miR- 106b in the pathogenesis of asthma and their association with asthma severity, IgE, and inflammatory cytokines in asthmatic children. Thirty asthmatic children and twenty age-matched healthy children aged 4-17 years old were enrolled. Expression of plasma miR-146a and miR-106b was measured using quantitative real-time PCR. Plasma levels of interleukin-5 (IL-5) and interleukin-13 (IL-13) were assessed using ELISA. Lung functions were measured by Spirometry. MiR-146a and miR-106b were significantly over-expressed in asthmatic children compared to healthy children. A significant positive correlation between total IgE and both miR-146a and miR-106b was found while no significant correlation could be detected between these miRNAs and asthma severity in asthmatic children. Plasma levels of IL-5 and IL-13 were non-significantly higher in asthmatic children compared to healthy children, and there was no significant correlation between them and both miR-146a and miR-106b expressions in the asthmatic children. The aberrant expression of immune-related miRNAs (miR-146a and miR-106b) and inflammatory cytokines (IL-5 and IL-13) among asthmatic children suggest their probable role in asthma pathogenesis.
Collapse
Affiliation(s)
- Hala Gouda Elnady
- Department of Child Health, Medical Research Division, National Research Centre, Egypt
| | - Lobna Sayed Sherif
- Department of Child Health, Medical Research Division, National Research Centre, Egypt
| | - Naglaa Mohamed Kholoussi
- Immunogenetics Department, Human Genetics and Genome Research Division, National Resrearch Centre, Egypt
| | - Mona Ali Azzam
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Egypt; McMaster University, Hamilton, Canada
| | - Ahmed Rashad Foda
- Department of Child Health, Medical Research Division, National Research Centre, Egypt
| | - Iman Helwa
- Immunogenetics Department, Human Genetics and Genome Research Division, National Resrearch Centre, Egypt
| | - Rania Nabil Sabry
- Department of Child Health, Medical Research Division, National Research Centre, Egypt
| | - Eman Eissa
- Immunogenetics Department, Human Genetics and Genome Research Division, National Resrearch Centre, Egypt
| | - Reham Faisal Fahmy
- Department of Child Health, Medical Research Division, National Research Centre, Egypt
| |
Collapse
|
5
|
An LF, Li ZD, Li L, Li H, Yu J. Pharmacological Effects of Novel Peptide Drugs on Allergic Rhinitis at the Small Ribonucleic Acids Level. Front Genet 2020; 11:560812. [PMID: 33061944 PMCID: PMC7517717 DOI: 10.3389/fgene.2020.560812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022] Open
Abstract
Using an allergic rhinitis (AR) model, we evaluated the pharmacological effects of novel peptide drugs (P-ONE and P-TWO) at the small RNA (sRNA) level. Using high-throughput sequencing, we assessed the sRNA expression profile of the negative control, AR antagonist (positive control), P-ONE, and P-TWO groups. By functional clustering and Gene Ontology and KEGG pathway analyses, we found that sRNA target genes have a specific enrichment pattern and may contribute to the effects of the novel peptides. Small RNA sequencing confirmed the biological foundations of novel and traditional AR treatments and suggested unique pharmacological effects. Our findings will facilitate evaluation of the pathogenesis of AR and of the pharmacological mechanisms of novel peptide drugs.
Collapse
Affiliation(s)
- Li-Feng An
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhan-Dong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Measurement Biotechnique Research Center, Jilin Engineering Normal University, Changchun, China
| | - Lin Li
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Jian Yu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Measurement Biotechnique Research Center, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
6
|
Specjalski K, Jassem E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch Immunol Ther Exp (Warsz) 2019; 67:213-223. [PMID: 31139837 PMCID: PMC6597590 DOI: 10.1007/s00005-019-00547-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are 18-22 nucleotides long and highly conserved throughout evolution. Currently, they are considered one of the fundamental regulatory mechanisms of genes expression. It has been demonstrated that miRNAs are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. More recently, the role of miRNA has also been revealed in numerous immunological and inflammatory disorders, including allergic inflammation. Specific miRNA profiles were demonstrated in asthma, allergic rhinitis and atopic dermatitis. A core set of miRNAs involved in atopic diseases include upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b, miR-155 and downregulated let-7 family, miR-193b and miR-375. Most of the involved miRNAs increase secretion of Th2 cytokines (miR-1248, miR-146b), decrease secretion of Th1 cytokines (miR-513-5p, miR-625-5p) or promote differentiation of T cells towards Th2 (miR-21, miR-19a). In asthma miR-140-3p, miR-708 and miR-142-3p play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. Some single miRNAs or, more probably, their sets hold the promise for their use as biomarkers of atopic diseases. They are also promising target of future therapies.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland.
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland
| |
Collapse
|
7
|
Specjalski K, Maciejewska A, Pawłowski R, Zieliński M, Trzonkowski P, Pikuła M, Jassem E. Changing microRNA Expression during Three-Month Wasp Venom Immunotherapy. Immunol Invest 2019; 48:835-843. [DOI: 10.1080/08820139.2019.1617303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Agnieszka Maciejewska
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Ryszard Pawłowski
- Laboratory of Forensic Genetics, Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Schiener M, Graessel A, Ollert M, Schmidt-Weber CB, Blank S. Allergen-specific immunotherapy of Hymenoptera venom allergy - also a matter of diagnosis. Hum Vaccin Immunother 2017; 13:2467-2481. [PMID: 28604163 PMCID: PMC5647953 DOI: 10.1080/21645515.2017.1334745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Accepted: 05/21/2017] [Indexed: 12/16/2022] Open
Abstract
Stings of hymenoptera can induce IgE-mediated hypersensitivity reactions in venom-allergic patients, ranging from local up to severe systemic reactions and even fatal anaphylaxis. Allergic patients' quality of life can be mainly improved by altering their immune response to tolerate the venoms by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy, but was additionally used to create tools which enable the analysis of therapeutic venom extracts on a molecular level. Therefore, during the last decade the detailed knowledge of the allergen composition of hymenoptera venoms has substantially improved diagnosis and therapy of venom allergy. This review focuses on state of the art diagnostic and therapeutic options as well as on novel directions trying to improve therapy.
Collapse
Affiliation(s)
- Maximilian Schiener
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Anke Graessel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|