1
|
Aomine Y, Shimo Y, Sakurai K, Abe M, Macpherson T, Ozawa T, Hikida T. Sex-dependent differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. J Neurochem 2025; 169:e16227. [PMID: 39289039 DOI: 10.1111/jnc.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex-dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein-protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic-related genes in males and increased expression of innate immunity-related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex-dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Suita, Japan
| | - Yuto Shimo
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mayuka Abe
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
2
|
Sherman HT, Liu K, Kwong K, Chan ST, Li AC, Kong XJ. Carbon monoxide (CO) correlates with symptom severity, autoimmunity, and responses to probiotics treatment in a cohort of children with autism spectrum disorder (ASD): a post-hoc analysis of a randomized controlled trial. BMC Psychiatry 2022; 22:536. [PMID: 35941573 PMCID: PMC9358122 DOI: 10.1186/s12888-022-04151-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation, autoimmunity, and gut-brain axis have been implicated in the pathogenesis of autism spectrum disorder (ASD). Carboxyhemoglobin (SpCO) as a non-invasive measurement of inflammation has not been studied in individuals with ASD. We conducted this post-hoc study based on our published clinical trial to explore SpCO and its association with ASD severity, autoimmunity, and response to daily Lactobacillus plantarum probiotic supplementation. METHODS In this study, we included 35 individuals with ASD aged 3-20 years from a previously published clinical trial of the probiotic Lactobacillus plantarum. Subjects were randomly assigned to receive daily Lactobacillus plantarum probiotic (6 × 1010 CFUs) or a placebo for 16 weeks. The outcomes in this analysis include Social Responsiveness Scale (SRS), Aberrant Behavior Checklist second edition (ABC-2), Clinical Global Impression (CGI) scale, SpCO measured by CO-oximetry, fecal microbiome by 16 s rRNA sequencing, blood serum inflammatory markers, autoantibodies, and oxytocin (OT) by ELISA. We performed Kendall's correlation to examine their interrelationships and used Wilcoxon rank-sum test to compare the means of all outcomes between the two groups at baseline and 16 weeks. RESULTS Elevated levels of serum anti-tubulin, CaM kinase II, anti-dopamine receptor D1 (anti-D1), and SpCO were found in the majority of ASD subjects. ASD severity is correlated with SpCO (baseline, R = 0.38, p = 0.029), anti-lysoganglioside GM1 (R = 0.83, p = 0.022), anti-tubulin (R = 0.69, p = 0.042), and anti-D1 (R = 0.71, p = 0.045) in treatment group. CONCLUSIONS The findings of the present study suggests that the easily administered and non-invasive SpCO test offers a potentially promising autoimmunity and inflammatory biomarker to screen/subgroup ASD and monitor the treatment response to probiotics. Furthermore, we propose that the associations between autoantibodies, gut microbiome profile, serum OT level, GI symptom severity, and ASD core symptom severity scores are specific to the usage of probiotic treatment in our subject cohort. Taken together, these results warrant further studies to improve ASD early diagnosis and treatment outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT03337035 , registered November 8, 2017.
Collapse
Affiliation(s)
- Hannah Tayla Sherman
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Kevin Liu
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Kenneth Kwong
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Suk-Tak Chan
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Alice Chukun Li
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, USA. .,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
3
|
Macpherson T, Kim JY, Hikida T. Nucleus Accumbens Core Dopamine D2 Receptor-Expressing Neurons Control Reversal Learning but Not Set-Shifting in Behavioral Flexibility in Male Mice. Front Neurosci 2022; 16:885380. [PMID: 35837123 PMCID: PMC9275008 DOI: 10.3389/fnins.2022.885380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to use environmental cues to flexibly guide responses is crucial for adaptive behavior and is thought to be controlled within a series of cortico-basal ganglia-thalamo-cortical loops. Previous evidence has indicated that different prefrontal cortical regions control dissociable aspects of behavioral flexibility, with the medial prefrontal cortex (mPFC) necessary for the ability to shift attention to a novel strategy (set-shifting) and the orbitofrontal cortex (OFC) necessary for shifting attention between learned stimulus-outcome associations (reversal learning). The nucleus accumbens (NAc) is a major downstream target of both the mPFC and the OFC; however, its role in controlling reversal learning and set-shifting abilities is still unclear. Here we investigated the contribution of the two major NAc neuronal populations, medium spiny neurons expressing either dopamine D1 or D2 receptors (D1-/D2-MSNs), in guiding reversal learning and set-shifting in an attentional set-shifting task (ASST). Persistent inhibition of neurotransmitter release from NAc D2-MSNs, but not D1-MSNs, resulted in an impaired ability for reversal learning, but not set-shifting in male mice. These findings suggest that NAc D2-MSNs play a critical role in suppressing responding toward specific learned cues that are now associated with unfavorable outcomes (i.e., in reversal stages), but not in the suppression of more general learned strategies (i.e., in set-shifting). This study provides further evidence for the anatomical separation of reversal learning and set-shifting abilities within cortico-basal ganglia-thalamo-cortical loops.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Tom Macpherson,
| | - Ji Yoon Kim
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Takatoshi Hikida,
| |
Collapse
|
4
|
Dopamine D2L Receptor Deficiency Alters Neuronal Excitability and Spine Formation in Mouse Striatum. Biomedicines 2022; 10:biomedicines10010101. [PMID: 35052781 PMCID: PMC8773425 DOI: 10.3390/biomedicines10010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson’s disease or drug-induced dyskinesias.
Collapse
|
5
|
Su Y, Lian J, Hodgson J, Zhang W, Deng C. Prenatal Poly I:C Challenge Affects Behaviors and Neurotransmission via Elevated Neuroinflammation Responses in Female Juvenile Rats. Int J Neuropsychopharmacol 2021; 25:160-171. [PMID: 34893855 PMCID: PMC8832231 DOI: 10.1093/ijnp/pyab087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to polyriboinosinic-polyribocytidylic acid (Poly I:C) in pregnant rats has been reported to cause schizophrenia-like behaviors and abnormal neurotransmissions in adult, particularly male, offspring. However, what is less well understood are the effects of maternal Poly I:C exposure on adolescent behaviors and neurotransmission in female juvenile rats. METHODS Female adolescent Poly I:C offspring were constructed by treating with 5 mg/kg Poly I:C on timed pregnant rats (gestation day 15). A battery of behavioral tests was conducted during postnatal day 35-60. Neurotransmitter receptors and inflammation markers in brain regions were evaluated by RT-qPCR on postnatal day 60. RESULTS Open field, elevated plus maze, and forced swimming tests revealed that prenatal Poly I:C exposure led to elevated anxiety-like and depression-like behaviors in female adolescent offspring. Deficits in pre-pulse inhibition and social interaction were also observed. However, the Poly I:C rats had better performance than the controls in the novel object recognition memory test, which demonstrated a behavioral phenotype with improved cognitive function. Prenatal Poly I:C exposure caused brain region-specific elevation of the P2X7 receptor- and NF-κB-NLRP3-IL-1β inflammatory signaling in female juvenile rats. Prenatal Poly I:C exposure decreased expression of GABAA receptor subunits Gabrb3 in the prefrontal cortex and Gabrb1 and dopamine D2 receptor in the hippocampus, but increased NMDA receptor subunit Grin2a in the prefrontal cortex, 5-HT2A in the hippocampus, and Gabrb3 and D2 receptor in the nucleus accumben. CONCLUSIONS Prenatal Poly I:C challenge causes behavioral deficits and brain-specific neurotransmission changes via elevated neuroinflammation responses in female adolescent offspring rats.
Collapse
Affiliation(s)
- Yueqing Su
- The School of Public Health, Fujian Medical University, Fuzhou, China,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China,Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Wenchang Zhang
- The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia,Correspondence: Chao Deng, PhD, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia ()
| |
Collapse
|
6
|
Ayabe T, Ohya R, Ano Y. β-lactolin, a whey-derived glycine-threonine-tryptophan-tyrosine lactotetrapeptide, improves prefrontal cortex-associated reversal learning in mice. Biosci Biotechnol Biochem 2020; 84:1039-1046. [PMID: 31928148 DOI: 10.1080/09168451.2020.1714424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dementia and cognitive decline have become worldwide public health problems. We have previously reported that a whey-derived glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improves hippocampus-dependent memory functions in mice. The supplementation with a whey digest rich in β-lactolin improves memory retrieval and executive function in a clinical trial, but the effect of β-lactolin on prefrontal cortex (PFC)-associated cognitive function was unclear. Here we examined the effect of β-lactolin and the whey digest on PFC-associated visual discrimination (VD) and reversal discrimination (RD) learning, using a rodent touch panel-based operant system. β-Lactolin and the whey digest significantly improved the RD learning, and the whey digest enhanced the response latency during the VD task, indicating that β-lactolin and the whey digest improve PFC-associated cognitive functions. Given the translational advantages of the touch panel operant system, consumption of β-lactolin in daily life could be beneficial for improving human PFC-associated cognitive function, helping to prevent dementia.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Holdings Company Ltd, Yokohama-shi, Japan
| |
Collapse
|
7
|
Zhukovsky P, Puaud M, Jupp B, Sala-Bayo J, Alsiö J, Xia J, Searle L, Morris Z, Sabir A, Giuliano C, Everitt BJ, Belin D, Robbins TW, Dalley JW. Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology 2019; 44:2163-2173. [PMID: 30952156 PMCID: PMC6895115 DOI: 10.1038/s41386-019-0381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n = 24) were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability. A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait anxiety may be a latent variable underlying this interaction.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Mickael Puaud
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Júlia Sala-Bayo
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Lydia Searle
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Zoe Morris
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aryan Sabir
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
8
|
Ayabe T, Ohya R, Ano Y. Hop-Derived Iso-α-Acids in Beer Improve Visual Discrimination and Reversal Learning in Mice as Assessed by a Touch Panel Operant System. Front Behav Neurosci 2019; 13:67. [PMID: 31001094 PMCID: PMC6454052 DOI: 10.3389/fnbeh.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Dementia and cognitive decline have become worldwide health problems due to rapid growth of the aged population in many countries. We previously demonstrated that single or short-term administration of iso-α-acids, hop-derived bitter acids in beer, improves the spatial memory of scopolamine-induced amnesia model mice in the Y-maze and enhances novel object recognition in normal mice via activation of the vagus nerve and hippocampal dopaminergic system. However, these behavioral tests do not replicate the stimulus conditions or response requirements of human memory tests, and so may have poor translational validity. In this report, we investigated the effects of iso-α-acids on visual discrimination (VD) and reversal discrimination (RD) using a touch panel-based operant system similar to that used for human working memory tests. In the VD task, scopolamine treatment reduced correct response rate and prolonged response latency in mice, deficits reversed by prior oral administration of iso-α-acids. In the RD task, administration of iso-α-acids significantly increased correct response rate compared to vehicle administration. Previous studies have reported that dopamine signaling is involved in both VD and RD learning, suggesting that enhancement of dopamine release contributes to improved memory performance in mice treated with iso-α-acids. Taken together, iso-α-acids improve VD and RD learning, which are considered high-order cognitive functions. Given the translational advantages of the touch panel-based operant system, the present study suggests that iso-α-acids could be effective for improvement of working memory in human dementia patients.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| |
Collapse
|
9
|
Hikida T. [Homeostatic regulation of basal ganglia circuit for flexible behavior]. Nihon Yakurigaku Zasshi 2018; 152:295-298. [PMID: 30531100 DOI: 10.1254/fpj.152.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral inflexibility has been reported in various psychiatric disorders including drug addiction and schizophrenia. Considerable evidence has demonstrated a critical role for the basal ganglia in the flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs) in the basal ganglia circuit. We used a reversible neurotransmission blocking technique to examine the role of D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task in the IntelliCage. We demonstrated that D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. We also showed that D2L receptors are necessary for visual discrimination and reversal learning. These results suggest that D2L receptors and D2-MSNs have a critical role in the homeostatic regulation of basal ganglia circuit for flexible behaviors.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University
| |
Collapse
|
10
|
Wang X, Qiao Y, Dai Z, Sui N, Shen F, Zhang J, Liang J. Medium spiny neurons of the anterior dorsomedial striatum mediate reversal learning in a cell-type-dependent manner. Brain Struct Funct 2018; 224:419-434. [PMID: 30367246 DOI: 10.1007/s00429-018-1780-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022]
Abstract
The striatum has been implicated in the regulation of cognitive flexibility. Abnormalities in the anterior dorsomedial striatum (aDMS) are revealed in many mental disorders in which cognitive inflexibility is commonly observed. However, it remains poorly understood whether the aDMS plays a special role in flexible cognitive control and what the regulation pattern is in different neuronal populations. Based on the reversal learning task in mice, we showed that optogenetic activation in dopamine receptor 1-expressing medium spiny neurons (D1R-MSNs) of the aDMS impaired flexibility; meanwhile, suppressing these neurons facilitated behavioral performance. Conversely, D2R-MSN activation accelerated reversal learning, but it induced no change through neuronal suppression. The acquisition and retention of discrimination learning were unaffected by the manipulation of any type of MSN. Through bi-direct optogenetic modulation in D1R-MSNs of the same subject in a serial reversal learning task, we further revealed the function of D1R-MSNs during different stages of reversal learning, where inhibiting and exciting the same group of neurons reduced perseverative errors and increased regressive errors. Following D1R- and D2R-MSN activation in the aDMS, neuronal activity of the mediodorsal thalamus decreased and increased, respectively, in parallel with behavioral impairment and facilitation, but not as a direct result of the activation of the striatal MSNs. We propose that D1R- and D2R-MSN sub-populations in the aDMS exert opposing functions in cognitive flexibility regulation, with more important and complex roles of D1R-MSNs involved. Mental disorders with cognitive flexibility problems may feature an underlying functional imbalance in the aDMS' two types of neurons.
Collapse
Affiliation(s)
- Xingyue Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qiao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Schwarz AP, Rotov AY, Chuprina OI, Krytskaya DU, Trofimov AN, Kosheverova VV, Ischenko AM, Zubareva OE. Developmental prefrontal mRNA expression of D2 dopamine receptor splice variants and working memory impairments in rats after early life Interleukin-1β elevation. Neurobiol Learn Mem 2018; 155:231-238. [PMID: 30092312 DOI: 10.1016/j.nlm.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Long (D2L) and Short (D2S) isoforms of D2 dopamine receptor differ in their biochemical and physiological properties, which could affect functioning of prefrontal cortex. Contribution of distinct D2 dopamine receptor isoforms to cognitive dysfunctions and its developmental regulation are currently not fully elucidated. In the present study, we evaluated developmental mRNA expression of D2S/D2L dopamine receptor isoforms within the rat medial prefrontal cortex (mPFC) in the model of neurodevelopmental cognitive dysfunction. Working memory performance (Y-maze spontaneous alternations) and D2S/D2L mRNA expression in the mPFC (by qRT-PCR) were evaluated in juvenile (P27), adolescent (P42-47) and adult (P75-90) rats after chronic early life treatment with proinflammatory cytokine interleukin (IL)-1β (1 µg/kg i.p. daily P15-21). It was shown that IL-1β elevation during the 3rd week of life leads to working memory deficit originating in juvenile animals and persisting into adulthood. D2S mRNA expression was strongly downregulated during adolescence, and such downregulation was exaggerated in animals injected with IL-1β during P15-21. Early life IL-1β administrations influenced developmental changes in the D2S/D2L mRNA ratio. This measure was found to be decreased in adolescent and adult control (intact and vehicle-treated) rats compared to juvenile control, while in the case of IL-1β-treated animals, the decrease in D2S/D2L ratio was observed only in adulthood but not in adolescence compared to juvenile rats. During the adolescence, D2S mRNA expression was downregulated and D2S/D2L ratio was upregulated in the mPFC of rats treated with IL-1β during the 3rd week of life compared to controls. Based on these data we conclude that changes in the developmental expression of D2 dopamine receptor splice variants within mPFC may underlie long-lasting cognitive deficit associated with neonatal pathology.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia.
| | - Alexander Yu Rotov
- Laboratory of Evolution of the Sensory Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| | - Olga I Chuprina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Darya U Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya street 7, 197110 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| |
Collapse
|
12
|
Wulaer B, Nagai T, Sobue A, Itoh N, Kuroda K, Kaibuchi K, Nabeshima T, Yamada K. Repetitive and compulsive-like behaviors lead to cognitive dysfunction in Disc1Δ2-3/Δ2-3mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12478. [DOI: 10.1111/gbb.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Affiliation(s)
- B. Wulaer
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - T. Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - A. Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - N. Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - K. Kuroda
- Department of Cell Pharmacology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - K. Kaibuchi
- Department of Cell Pharmacology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - T. Nabeshima
- Advanced Diagnostic System Research Laboratory; Fujita Health University, Graduate School of Health Sciences; Toyoake Japan
- Aino University; Ibaragi Japan
| | - K. Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
13
|
Abstract
Neuroimaging studies in animal models and human subjects have each revealed that relatively low striatal dopamine D2-like receptor binding potential is associated with poor impulse control and with vulnerability for addiction-related behaviors. These studies cannot, however, disambiguate the roles for various pools of D2 receptors found in the striatum (e.g., those expressed on medium spiny striato-pallidal neurons vs on dopamine-releasing nerve terminals) in these behavioral outcomes. To clarify the role of the latter pool, namely, D2 autoreceptors, we studied mice carrying a conditional DRD2 gene, with or without Cre-recombinase expressed under the transcriptional control of the dopamine transporter gene locus (autoDrd2-KO, n = 19 and controls, n = 21). These mice were tested for locomotor response to cocaine, and spatial reversal learning was assessed in operant conditioning chambers. As predicted, compared to control mice, autoDrd2-KO animals demonstrated heightened sensitivity to the locomotor stimulating effect of cocaine (10 mg/kg, i.p.), confirming previous research using a similar genetic model. In the spatial reversal learning task, autoDrd2-KO mice were slower to reach a learning criterion and had difficulty sustaining a prolonged nose poke response, measurements conceptually related to impaired response inhibition. Rate of learning of the initial discrimination and latencies to collect rewards, to initiate trials and to produce a response were unaffected by genetic deletion of D2 autoreceptors, discarding possible motor and motivational factors. Together, these findings confirm the role of D2 autoreceptors in reversal learning and suggest a broader involvement in behavioral inhibition mechanisms.
Collapse
|
14
|
Schwarz AP, Trofimov AN, Zubareva OE, Lioudyno VI, Kosheverova VV, Ischenko AM, Klimenko VM. Prefrontal mRNA expression of long and short isoforms of D2 dopamine receptor: Possible role in delayed learning deficit caused by early life interleukin-1β treatment. Behav Brain Res 2017; 333:118-122. [PMID: 28673768 DOI: 10.1016/j.bbr.2017.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/11/2023]
Abstract
Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia.
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, 199223 St. Petersburg, Russia
| | - Victoria I Lioudyno
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya 7, 197110 St. Petersburg, Russia
| | - Victor M Klimenko
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| |
Collapse
|