1
|
Quattrone A, Franzmeier N, Huppertz HJ, Klietz M, Roemer SN, Boxer AL, Levin J, Höglinger GU. Magnetic Resonance Imaging Measures to Track Atrophy Progression in Progressive Supranuclear Palsy in Clinical Trials. Mov Disord 2024; 39:1329-1342. [PMID: 38825840 DOI: 10.1002/mds.29866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Several magnetic resonance imaging (MRI) measures have been suggested as progression biomarkers in progressive supranuclear palsy (PSP), and some PSP staging systems have been recently proposed. OBJECTIVE Comparing structural MRI measures and staging systems in tracking atrophy progression in PSP and estimating the sample size to use them as endpoints in clinical trials. METHODS Progressive supranuclear palsy-Richardson's syndrome (PSP-RS) patients with one-year-follow-up longitudinal brain MRI were selected from the placebo arms of international trials (NCT03068468, NCT01110720, NCT01049399) and the DescribePSP cohort. The discovery cohort included patients from the NCT03068468 trial; the validation cohort included patients from other sources. Multisite age-matched healthy controls (HC) were included for comparison. Several MRI measures were compared: automated atlas-based volumetry (44 regions), automated planimetric measures of brainstem regions, and four previously described staging systems, applied to volumetric data. RESULTS Of 508 participants, 226 PSP patients including discovery (n = 121) and validation (n = 105) cohorts, and 251 HC were included. In PSP patients, the annualized percentage change of brainstem and midbrain volume, and a combined index including midbrain, frontal lobe, and third ventricle volume change, were the progression biomarkers with the highest effect size in both cohorts (discovery: >1.6; validation cohort: >1.3). These measures required the lowest sample sizes (n < 100) to detect 30% atrophy progression, compared with other volumetric/planimetric measures and staging systems. CONCLUSIONS This evidence may inform the selection of imaging endpoints to assess the treatment efficacy in reducing brain atrophy rate in PSP clinical trials, with automated atlas-based volumetry requiring smaller sample size than staging systems and planimetry to observe significant treatment effects. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andrea Quattrone
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Neuroscience Research Centre, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | | | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sebastian N Roemer
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU, Munich, Germany
| | - Adam L Boxer
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| |
Collapse
|
2
|
Street D, Bevan-Jones WR, Malpetti M, Jones PS, Passamonti L, Ghosh BC, Rittman T, Coyle-Gilchrist IT, Allinson K, Dawson CE, Rowe JB. Structural correlates of survival in progressive supranuclear palsy. Parkinsonism Relat Disord 2023; 116:105866. [PMID: 37804622 PMCID: PMC7615224 DOI: 10.1016/j.parkreldis.2023.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/12/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Many studies of the Richardson's syndrome phenotype of progressive supranuclear palsy (PSP) have elucidated regions of progressive atrophy and neural correlates of clinical severity. However, the neural correlates of survival and how these differ according to variant phenotypes are poorly understood. We set out to identify structural changes that predict severity and survival from scanning date to death. METHODS Structural magnetic resonance imaging data from 112 deceased people with clinically defined 'probable' or 'possible' PSP were analysed. Neuroanatomical regions of interest volumes, thickness and area were correlated with 'temporal stage', defined as the ratio of time from symptom onset to death, time from scan to death ('survival from scan'), and in a subset of patients, clinical severity, adjusting for age and total intracranial volume. Forty-nine participants had post mortem confirmation of the diagnosis. RESULTS Using T1-weighted magnetic resonance imaging, we confirmed the midbrain, and bilateral cortical structural correlates of contemporary disease severity. Atrophy of the striatum, cerebellum and frontotemporal cortex correlate with temporal stage and survival from scan, even after adjusting for severity. Subcortical structure-survival relationships were stronger in Richardson's syndrome than variant phenotypes. CONCLUSIONS Although the duration of PSP varies widely between people, an individual's progress from disease onset to death (their temporal stage) reflects atrophy in striatal, cerebellar and frontotemporal cortical regions. Our findings suggest magnetic resonance imaging may contribute to prognostication and stratification of patients with heterogenous clinical trajectories and clarify the processes that confer mortality risk in PSP.
Collapse
Affiliation(s)
- Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | | | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Consiglio Nazionale Delle Ricerche (CNR), Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milano, Italy
| | - Boyd Cp Ghosh
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Wessex Neurological Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - Ian Ts Coyle-Gilchrist
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Norfolk and Norwich NHS Foundation Trust, Norwich, UK
| | - Kieren Allinson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; Department of Pathology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Catherine E Dawson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Wen Y, Yang Q, Jiao B, Zhang W, Lin J, Zhu Y, Xu Q, Zhou H, Weng L, Liao X, Zhou Y, Wang J, Guo J, Yan X, Jiang H, Tang B, Shen L. Clinical features of progressive supranuclear palsy. Front Aging Neurosci 2023; 15:1229491. [PMID: 37711994 PMCID: PMC10498458 DOI: 10.3389/fnagi.2023.1229491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Background Progressive supranuclear palsy (PSP) is a clinically heterogenous atypical parkinsonian syndrome. Therefore, early recognition and correct diagnosis of PSP is challenging but essential. This study aims to characterize the clinical manifestations, magnetic resonance imaging (MRI), and longitudinal MRI changes of PSP in China. Method Clinical and MRI presentations were compared among 150 cases with PSP. Then the longitudinal MRI changes among 20 patients with PSP were further explored. Additionally, a series of midbrain-based MRI parameters was compared between PSP-P and PD. Results Throughout the course of the disease, there were differences in the symptoms of the fall and hand tremor between the PSP-RS and PSP-P. There were significant differences in the six midbrain-based MRI parameters between the PSP-RS and the PSP-P, including hummingbird sign, midbrain diameter, midbrain to pons ratio (MTPR), midbrain area, midbrain area to pons area ratio (Ma/Pa), and midbrain tegmental length (MBTegm). Longitudinal MRI studies revealed that the annual rel.ΔMTPR and rel.Δ (Ma/Pa) for PSP were 5.55 and 6.52%, respectively; additionally, PSP-RS presented a higher decline rate than PSP-P. Moreover, MTPR ≤0.56, midbrain diameter ≤ 0.92, midbrain area ≤ 1.00, and third ventricle width ≤ 0.75 could identify PSP-P from PD. Conclusion PSP-P differs from PSP-RS regarding clinical manifestations, MRI, and longitudinal MRI changes. MRI parameters could be potential imaging markers to identify PSP-P from PD.
Collapse
Affiliation(s)
- Yafei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Lin
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
4
|
Madetko N, Alster P, Kutyłowski M, Migda B, Nieciecki M, Koziorowski D, Królicki L. Is MRPI 2.0 More Useful than MRPI and M/P Ratio in Differential Diagnosis of PSP-P with Other Atypical Parkinsonisms? J Clin Med 2022; 11:jcm11102701. [PMID: 35628828 PMCID: PMC9147601 DOI: 10.3390/jcm11102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Differential diagnosis of progressive supranuclear palsy remains difficult, especially when it comes to the parkinsonism predominant type (PSP-P), which has a more favorable clinical course. In this entity, especially during the advanced stages, significant clinical overlaps with other tauopathic parkinsonian syndromes and multiple system atrophy (MSA) can be observed. Among the available additional diagnostic methods in every-day use, magnetic resonance imaging (MRI) focused specifically on the evaluation of the mesencephalon seems to be crucial as it is described as a parameter associated with PSP. There is growing interest in relation to more advanced mesencephalic parameters, such as the magnetic resonance parkinsonism index (MRPI) and MRPI 2.0. Based on the evaluation of 74 patients, we demonstrate that only the mesencephalon/pons ratio and MRPI show a significant difference between PSP-P and MSA-parkinsonian type (MSA-P). Interestingly, this differential feature was not maintained by MRPI 2.0. The mesencephalon to pons ratio (M/P), MRPI and MRPI 2.0 were not found to be feasible for the differentiation of PSP-P from other atypical tauopathic syndromes.
Collapse
Affiliation(s)
- Natalia Madetko
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland;
- Correspondence: (N.M.); (P.A.)
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland;
- Correspondence: (N.M.); (P.A.)
| | - Michał Kutyłowski
- Department of Radiology, Mazovian Brodnowski Hospital, 03-242 Warsaw, Poland;
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, 03-242 Warsaw, Poland;
| | - Michał Nieciecki
- Department of Nuclear Medicine, Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Dariusz Koziorowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland;
| | - Leszek Królicki
- Department of Nuclear Medicine, Mazovian Brodno Hospital, 03-242 Warsaw, Poland;
- Department of Nuclear Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Alster P, Nieciecki M, Migda B, Kutyłowski M, Madetko N, Duszyńska-Wąs K, Charzyńska I, Koziorowski D, Królicki L, Friedman A. The Strengths and Obstacles in the Differential Diagnosis of Progressive Supranuclear Palsy—Parkinsonism Predominant (PSP-P) and Multiple System Atrophy (MSA) Using Magnetic Resonance Imaging (MRI) and Perfusion Single Photon Emission Computed Tomography (SPECT). Diagnostics (Basel) 2022; 12:diagnostics12020385. [PMID: 35204476 PMCID: PMC8871165 DOI: 10.3390/diagnostics12020385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple System Atrophy—Parkinsonism Predominant (MSA-P) and Progressive Supranuclear Palsy—Parkinsonism Predominant (PSP-P) are the clinical manifestations of atypical parkinsonism. Currently, there are no efficient in vivo methods available relating to neuroimaging or biochemical analysis in the examination of these entities. Among the advanced methods available, using positron emission tomography is constrained by high cost and low accessibility. In this study the authors examined patients with two types of atypical parkinsonism—MSA-P and PSP-P, which are difficult to differentiate, especially in the early years of their development. The aim of this study was to assess whether the examination of patients in the period following the early years (3–6-year duration of symptoms) could be enhanced by perfusion single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI) or evaluation of cognitive abilities. Extended examination using MRI and perfusion SPECT showed that the evaluation of the mesencephalon/pons ratio, mesencephalic volume decrease, the Magnetic Resonance Parkinsonism Index (MRPI) and frontal perfusion should be considered more feasible than screening cognitive evaluation in MSA-P and PSP-P with a 3–6-year duration of symptoms.
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
- Correspondence:
| | - Michał Nieciecki
- Department of Nuclear Medicine, Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical Faculty, Medical University of Warsaw, 03-242 Warsaw, Poland;
| | - Michał Kutyłowski
- Department of Radiology, Mazovian Brodnowski Hospital, 03-242 Warsaw, Poland;
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| | - Karolina Duszyńska-Wąs
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| | - Ingeborga Charzyńska
- Department of Nuclear Medicine, Mazovian Brodno Hospital, 03-242 Warsaw, Poland; (I.C.); (L.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| | - Leszek Królicki
- Department of Nuclear Medicine, Mazovian Brodno Hospital, 03-242 Warsaw, Poland; (I.C.); (L.K.)
- Department of Nuclear Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, 03-242 Warsaw, Poland; (N.M.); (K.D.-W.); (D.K.); (A.F.)
| |
Collapse
|
6
|
Kannenberg S, Caspers J, Dinkelbach L, Moldovan AS, Ferrea S, Südmeyer M, Butz M, Schnitzler A, Hartmann CJ. Investigating the 1-year decline in midbrain-to-pons ratio in the differential diagnosis of PSP and IPD. J Neurol 2020; 268:1526-1532. [PMID: 33277666 PMCID: PMC7990839 DOI: 10.1007/s00415-020-10327-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 11/03/2022]
Abstract
Background A reliable measure of PSP-specific midbrain atrophy, the midbrain-to-pons ratio (MTPR) has been reported to support the differential diagnosis of progressive supranuclear palsy (PSP) from idiopathic Parkinson’s disease (IPD). Since longitudinal analyses are lacking so far, the present study aimed to evaluate the diagnostic value of the relative change of MTPR (relΔt_MTPR) over a 1-year period in patients with PSP, IPD, and healthy controls (HC). Methods Midsagittal individual MRIs of patients with PSP (n = 15), IPD (n = 15), and healthy controls (HC; n = 15) were assessed and the MTPR at baseline and after 1 year were defined. The diagnostic accuracy of the MTPR and its relative change were evaluated using ROC curve analyses. Results PSP-patients had a significantly lower MTPR at baseline (M = 0.45 ± 0.06), compared to both non-PSP groups (F (2, 41) = 62.82, p < 0.001), with an overall predictive accuracy of 95.6% for an MTPR ≤ 0.54. PSP-patients also presented a significantly stronger 1-year decline in MTPR compared to IPD (p < 0.001). Though predictive accuracy of relΔt_MTPR for PSP (M = − 4.74% ± 4.48) from IPD (M = + 1.29 ± 3.77) was good (76.6%), ROC analysis did not reveal a significant improvement of diagnostic accuracy by combining the MTPR and relΔt_MTPR (p = 0.670). Still, specificity for PSP increased, though not significantly (p = 0.500). Conclusion The present results indicate that the relΔt_MTPR is a potentially useful tool to support the differential diagnosis of PSP from IPD. For its relative 1-year change, still, more evaluation is needed.
Collapse
Affiliation(s)
- Silja Kannenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alexia-S Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Department of Neurology, Ernst Von Bergmann Hospital, Charlottenstraße 72, 14467, Potsdam, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christian J Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Cui SS, Ling HW, Du JJ, Lin YQ, Pan J, Zhou HY, Wang G, Wang Y, Xiao Q, Liu J, Tan YY, Chen SD. Midbrain/pons area ratio and clinical features predict the prognosis of progressive Supranuclear palsy. BMC Neurol 2020; 20:114. [PMID: 32228519 PMCID: PMC7106781 DOI: 10.1186/s12883-020-01692-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
Background Progressive supranuclear palsy (PSP) is a rare movement disorder with poor prognosis. This retrospective study aimed to characterize the natural history of PSP and to find predictors of shorter survival and faster decline of activity of daily living. Method All patients recruited fulfilled the movement disorder society (MDS) clinical diagnostic criteria for PSP (MDS-PSP criteria) for probable and possible PSP with median 12 years. Data were obtained including age, sex, date of onset, age at onset (AAO), symptoms reported at first visit and follow-up, date of death and date of institutionalization. Magnetic resonance imaging was collected at the first visit. Endpoints were death and institutionalization. Kaplan-Meier method and Cox proportional hazard model were used to explore factors associated with early death and institutionalization. Results Fifty-nine patients fulfilling MDS-PSP criteria were enrolled in our study. Nineteen patients (32.2%) had died and 31 patients (52.5%) were institutionalized by the end of the follow-up. Predictors associated with poorer survival were late-onset PSP and decreased M/P area ratio. Predictors associated with earlier institutionalization were older AAO and decreased M/P area ratio. Conclusion Older AAO and decreased M/P area ratio were predictors for earlier dearth and institutionalization in PSP. The neuroimaging biomarker M/P area ratio was a predictor for prognosis in PSP.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Wei Ling
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan-Juan Du
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Qi Lin
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Pan
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Yan Tan
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Alster P, Madetko N, Koziorowski D, Friedman A. Progressive Supranuclear Palsy-Parkinsonism Predominant (PSP-P)-A Clinical Challenge at the Boundaries of PSP and Parkinson's Disease (PD). Front Neurol 2020; 11:180. [PMID: 32218768 PMCID: PMC7078665 DOI: 10.3389/fneur.2020.00180] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Progressive Supranuclear Palsy (PSP) and Parkinson's Disease (PD), especially in their early stages, show overlapping clinical manifestations. The criteria for the diagnosis of PSP, released in 2017, indicate four basic features of the disease—postural instability (P), akinesia (A), oculomotor dysfunction (O) and cognitive and lingual disorders (C), which clarify the interpretation of the disease. There is growing interest in the second most common variant of PSP—parkinsonism predominant PSP-P. It is observed in up to 35% of cases. The diagnosis of PSP-P requires the presence of akinetic-rigid predominantly axial and levodopa resistant parkinsonism (A2) or parkinsonism with tremor and/or asymmetric and/or levodopa responsive (A3). The development of supplementary methods of examination added new insights to observations related to PSP-P. Among the methods recently analyzed are freezing of swallowing and speech breathing assessment, transcranial sonography, and various methods using magnetic resonance imaging, such as pons/midbrain area ratio and magnetic resonance parkinsonism index (MRPI), fractional anisotropy or mean diffusivity. The proper examination of overlapping parkinsonian syndromes, regardless of the development of the method of examination, remains an incompletely explored issue. The aim of this review is to elucidate which factors may be interpreted as influential in the differential diagnosis of PSP-P, PSP-RS and postural instability and gait difficulty (PIGD) subtype of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Wrocław Medical University, Wrocław, Poland
| | | | - Andrzej Friedman
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Quattrone A, Morelli M, Quattrone A, Vescio B, Nigro S, Arabia G, Nisticò R, Novellino F, Salsone M, Arcuri P, Luca A, Mazzuca A, Alessio C, Rocca F, Caracciolo M. Magnetic Resonance Parkinsonism Index for evaluating disease progression rate in progressive supranuclear palsy: A longitudinal 2-year study. Parkinsonism Relat Disord 2020; 72:1-6. [DOI: 10.1016/j.parkreldis.2020.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
|
10
|
Methods and utility of quantitative brainstem measurements in progressive supranuclear palsy versus Parkinson's disease in a routine clinical setting. Clin Park Relat Disord 2020; 3:100033. [PMID: 34316619 PMCID: PMC8298805 DOI: 10.1016/j.prdoa.2020.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022] Open
Abstract
Background and Purpose The clinical diagnosis of progressive supranuclear palsy can be challenging, as the clinical presentation overlaps with that of Parkinson's disease and multiple system atrophy. We sought to examine the practical utility of radiologic markers of progressive supranuclear palsy by investigating whether these markers could distinguish between patients with progressive supranuclear palsy-Richardson syndrome (PSP-RS) and those with Parkinson's disease based on imaging obtained in a typical clinical setting, not in a prospective research environment. Materials and methods This retrospective study included 13 patients with PSP-RS and 13 patients with Parkinson's disease who were followed for either condition at our institution at the time of the study and who had MRI records available. Patients were selected without regard to type of imaging obtained. All diagnoses were confirmed by a trained movement disorders specialist using validated diagnostic criteria. Groups were matched for age and disease duration at the time of scanning. MRI records were retrospectively obtained, and image analysis was performed by investigators blinded to disease classification. Midbrain area, midbrain to pons area ratio, midbrain anterior-posterior diameter, and MR parkinsonism index were calculated for each patient. Results All established measures of identifying progressive supranuclear palsy (midbrain area, midbrain to pons area ratio, midbrain anterior-posterior diameter, and MR parkinsonism index) were significantly different between patients with PSP-RS and those with Parkinson's disease. Conclusion Previously established radiographic markers distinguishing between PSP-RS and Parkinson's disease have practical utility in the clinical setting and not just in well-designed prospective analyses.
Collapse
|
11
|
Ahn JH, Kim M, Kim JS, Youn J, Jang W, Oh E, Lee PH, Koh SB, Ahn TB, Cho JW. Midbrain atrophy in patients with presymptomatic progressive supranuclear palsy-Richardson's syndrome. Parkinsonism Relat Disord 2019; 66:80-86. [PMID: 31307918 DOI: 10.1016/j.parkreldis.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/27/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION In the present study, midbrain atrophy and the pons-to-midbrain area ratio (P/M ratio) were investigated as diagnostic markers for presymptomatic progressive supranuclear palsy-Richardson's syndrome (Pre-PSP-RS). METHODS The present study included 27 patients with probable PSP-RS who underwent brain MRI at least twice before and after the development of clinical symptoms, age- and sex-matched participants with Parkinson's disease (PD, n = 27), and healthy controls (n = 27). The midbrain area, pons area, and P/M ratio of the Pre-PSP-RS, PD, and control subjects were measured using midsagittal images from brain MRI, and the parameters were compared among the groups. RESULTS The midbrain area decreased and the P/M ratio increased significantly in the Pre-PSP-RS patients compared with both the PD and control subjects (midbrain, Pre-PSP-RS vs. PD = 1.01 cm2vs. 1.29 cm2, p < 0.001, Pre-PSP-RS vs. controls = 1.01 cm2vs. 1.29 cm2, p < 0.001; P/M ratio, Pre-PSP-RS vs. PD = 5.27 vs. 4.03, p < 0.001, Pre-PSP-RS vs. controls = 5.27 cm2vs. 4.06 cm2, p < 0.001). The P/M ratio had high sensitivity (vs. PD, 96.3%, vs. control, 88.9%) and specificity (vs. PD, 81.5%, vs. control, 96.3%) in differentiating Pre-PSP-RS patients from PD and control subjects. CONCLUSION Midbrain atrophy precedes the clinical symptoms of PSP-RS and could be a useful diagnostic imaging biomarker for Pre-PSP-RS. Furthermore, this information could play an important role in the development of future treatment strategies.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, 38 Bangdong-gil, Sacheon, Gangneung, 25440, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, College of Medicine, 282 Munhwa-ro, Jung-Gu, Daejun, 35015, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seong-Beom Koh
- Departments of Neurology, Korea University College of Medicine, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Tae-Beom Ahn
- Department of Neurology, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|