1
|
Rönn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, Volkov P, Schulze MB, Mulder H, Eliasson L, Ruhrmann S, Bacos K, Ling C. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun 2023; 14:8040. [PMID: 38086799 PMCID: PMC10716521 DOI: 10.1038/s41467-023-43719-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by β-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in β-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient β-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Hamilton
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, København, Denmark
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- HCEMM-Su, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sonia Garcia-Calzon
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Alexandros Karagiannopoulos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Hans Stenlund
- Swedish Metabolomics Centre, Umeå University, Umeå, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
2
|
Lu L, Yang L, Lu YP, Jiang Q, Wang CR, Liu CQ, Xu N, Jiang S, Zhang G, Lai EY, Han F, Lu YM. Endothelium-derived Cdk5 deficit aggravates air pollution-induced peripheral vasoconstriction through AT 1R upregulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112314. [PMID: 33989920 DOI: 10.1016/j.ecoenv.2021.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 infiltrates into circulation and increases the risk of systemic vascular dysfunction. As the first-line barrier against external stimuli, the molecular mechanism of the biological response of vascular endothelial cells to PM2.5 exposure remains unclear. In this study, 4-week-old mice were exposed to Hangzhou 'real' airborne PM2.5 for 2 months and were found to display bronchial and alveolar damage. Importantly, in the present study, we have demonstrated that Cdk5 deficit induced peripheral vasoconstriction through angiotensin II type 1 receptor under angiotensin II stimulation in Cdh5-cre;Cdk5f/n mice. In the brain, Cdk5 deficit increased the myogenic activity in the medullary arterioles under external pressure. On the other hand, no changes in cerebral blood flow and behavior patterns were observed in the Cdh5-cre;Cdk5f/n mice exposed to PM2.5. Therefore, our current findings indicate that CDK5 plays an important role in endothelium cell growth, migration, and molecular transduction, which is also a sensor for the response of vascular endothelial cells to PM2.5.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lin Yang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Medicine, Zhejiang University City College, Hangzhou 310058, Zhejiang, China
| | - Ya-Ping Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Qin Jiang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cui-Rong Wang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cui-Qing Liu
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nan Xu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shan Jiang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing 211166, China
| | - En-Yin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Liu XX, Yang L, Shao LX, He Y, Wu G, Bao YH, Lu NN, Gong DM, Lu YP, Cui TT, Sun NH, Chen DY, Shi WX, Fukunaga K, Chen HS, Chen Z, Han F, Lu YM. Endothelial Cdk5 deficit leads to the development of spontaneous epilepsy through CXCL1/CXCR2-mediated reactive astrogliosis. J Exp Med 2020; 217:jem.20180992. [PMID: 31699822 PMCID: PMC7037235 DOI: 10.1084/jem.20180992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Liu et al. reveal a key mechanism that mediating the transition from cerebrovascular damage to epilepsy. They identify the endothelial cyclin-dependent kinase 5 (CDK5) regulates astrocytic glutamate reuptake and increased glutamate synaptic function through CXCL1/CXCR2-mediated astrogliosis. Blood–brain barrier (BBB) dysfunction has been suggested to play an important role in epilepsy. However, the mechanism mediating the transition from cerebrovascular damage to epilepsy remains unknown. Here, we report that endothelial cyclin-dependent kinase 5 (CDK5) is a central regulator of neuronal excitability. Endothelial-specific Cdk5 knockout led to spontaneous seizures in mice. Knockout mice showed increased endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1) expression, decreased astrocytic glutamate reuptake through the glutamate transporter 1 (GLT1), and increased glutamate synaptic function. Ceftriaxone restored astrocytic GLT1 function and inhibited seizures in endothelial Cdk5-deficient mice, and these effects were also reversed after silencing Cxcl1 in endothelial cells and its receptor chemokine (C-X-C motif) receptor 2 (Cxcr2) in astrocytes, respectively, in the CA1 by AAV transfection. These results reveal a previously unknown link between cerebrovascular factors and epileptogenesis and provide a rationale for targeting endothelial signaling as a potential treatment for epilepsy.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lin Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Ling-Xiao Shao
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang He
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Huan Bao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Nan-Nan Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Mei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Ya-Ping Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Tian-Tian Cui
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning-He Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dan-Yang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Xing Shi
- Departments of Pharmaceutical, Administrative, and Basic Sciences, Schools of Pharmacy and Medicine, Loma Linda University Health, Loma Linda, CA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hong-Shan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Center for Global Health of Nanjing Medical University, Nanjing, China
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Genetic Determinants of Telomere Length in African American Youth. Sci Rep 2018; 8:13265. [PMID: 30185882 PMCID: PMC6125592 DOI: 10.1038/s41598-018-31238-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Telomere length (TL) is associated with numerous disease states and is affected by genetic and environmental factors. However, TL has been mostly studied in adult populations of European or Asian ancestry. These studies have identified 34 TL-associated genetic variants recently used as genetic proxies for TL. The generalizability of these associations to pediatric populations and racially diverse populations, specifically of African ancestry, remains unclear. Furthermore, six novel variants associated with TL in a population of European children have been identified but not validated. We measured TL from whole blood samples of 492 healthy African American youth (children and adolescents between 8 and 20 years old) and performed the first genome-wide association study of TL in this population. We were unable to replicate neither the 34 reported genetic associations found in adults nor the six genetic associations found in European children. However, we discovered a novel genome-wide significant association between TL and rs1483898 on chromosome 14. Our results underscore the importance of examining genetic associations with TL in diverse pediatric populations such as African Americans.
Collapse
|
5
|
Genome-wide association analysis identifies new candidate risk loci for familial intracranial aneurysm in the French-Canadian population. Sci Rep 2018. [PMID: 29531279 PMCID: PMC5847615 DOI: 10.1038/s41598-018-21603-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracranial Aneurysm (IA) is a common disease with a worldwide prevalence of 1–3%. In the French-Canadian (FC) population, where there is an important founder effect, the incidence of IA is higher and is frequently seen in families. In this study, we genotyped a cohort of 257 mostly familial FC IA patients and 1,992 FC controls using the Illumina NeuroX SNP-chip. The most strongly associated loci were tested in 34 Inuit IA families and in 32 FC IA patients and 106 FC controls that had been exome sequenced (WES). After imputation, one locus at 3p14.2 (FHIT, rs1554600, p = 4.66 × 10–9) reached a genome-wide significant level of association and a subsequent validation in Nunavik Inuit cohort further confirmed the significance of the FHIT variant association (rs780365, FBAT-O, p = 0.002839). Additionally, among the other promising loci (p < 5 × 10−6), the one at 3q13.2 (rs78125721, p = 4.77 × 10−7), which encompasses CCDC80, also showed an increased mutation burden in the WES data (CCDC80, SKAT-O, p = 0.0005). In this study, we identified two new potential IA loci in the FC population: FHIT, which is significantly associated with hypertensive IA, and CCDC80, which has potential genetic and functional relevance to IA pathogenesis, providing evidence on the additional risk loci for familial IA. We also replicated the previous IA GWAS risk locus 18q11.2, and suggested a potential locus at 8p23.1 that warrants further study.
Collapse
|