1
|
Kelava L, Pakai E, Ogasawara K, Fekete K, Pozsgai G, Pinter E, Garami A. Effects of Hydrogen Sulfide at Normal Body Temperature and in the Cold on Isolated Tail and Carotid Arteries from Rats and TRPA1 Knockout and Wild-Type Mice. Biomedicines 2024; 12:2874. [PMID: 39767780 PMCID: PMC11673252 DOI: 10.3390/biomedicines12122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Hydrogen sulfide (H2S) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates H2S-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (Na2S), which is a fast-releasing H2S donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography. Under the same circumstances, we also aimed to compare the effects of the canonical endothelium-dependent and -independent vasodilators, acetylcholine and sodium nitroprusside, respectively. Methods: We isolated the carotid and tail arteries from 32 adult Wistar rats and 64 TRPA1 knockout and wild-type mice, and then we studied their vasomotor responses to increasing doses (10-6-10-3 M) of Na2S as well as to acetylcholine and sodium nitroprusside (10-5 M for both) at 37 °C and in cold (17 or 20 °C). Results: In rat vessels, Na2S caused constriction of the carotids and relaxation of the tail arteries, which were not influenced by temperature. In mouse carotids, Na2S caused vasorelaxation, which was more pronounced in the cold at a lower dose (10-4 M). At a higher dose (10-3 M), the dilation was markedly attenuated in the absence of the TRPA1 channel. In the mouse tail arteries, Na2S caused vasorelaxation at 37 °C and vasocontraction in the cold. The genetic blockade of TRPA1 channels did not influence the vasomotor responses of the mouse tail arteries. Sodium nitroprusside-induced vasorelaxation was not influenced by any of the investigated factors, while acetylcholine-induced dilation decreased in the cold in all vessel types. Conclusions: Our results reveal the function of TRPA1 in the H2S-induced dilation of carotid arteries in mice. We also highlight interspecies differences in the vasomotor responses between rats and mice, as well as the importance of the effect of temperature on vascular responses. The implementation of the identified variables in future research can advance our understanding of cardiovascular physiology, especially in conditions with hypothermia (either accidental or therapeutic).
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Kazushi Ogasawara
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| | - Gabor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (L.K.); (E.P.); (K.O.); (K.F.)
| |
Collapse
|
2
|
Rumbus Z, Fekete K, Kelava L, Gardos B, Klonfar K, Keringer P, Pinter E, Pakai E, Garami A. Ammonium chloride-induced hypothermia is attenuated by transient receptor potential channel vanilloid-1, but augmented by ankyrin-1 in rodents. Life Sci 2024; 346:122633. [PMID: 38615746 DOI: 10.1016/j.lfs.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
AIMS Systemic administration of ammonium chloride (NH4Cl), an acidifying agent used in human patients and experimental conditions, causes hypothermia in mice, however, the mechanisms of the thermoregulatory response to NH4Cl and whether it develops in other species remained unknown. MAIN METHODS We studied body temperature (Tb) changes in rats and mice induced by intraperitoneal administration of NH4Cl after blockade of transient receptor potential vanilloid-1 (TRPV1) or ankyrin-1 (TRPA1) channels. KEY FINDINGS In rats, NH4Cl decreased Tb by 0.4-0.8°C (p < 0.05). The NH4Cl-induced hypothermia also developed in Trpv1 knockout (Trpv1-/-) and wild-type (Trpv1+/+) mice, however, the Tb drop was exaggerated in Trpv1-/- mice compared to Trpv1+/+ controls with maximal decreases of 4.0 vs. 2.1°C, respectively (p < 0.05). Pharmacological blockade of TRPV1 channels with AMG 517 augmented the hypothermic response to NH4Cl in genetically unmodified mice and rats (p < 0.05 for both). In contrast, when NH4Cl was infused to mice genetically lacking the TRPA1 channel, the hypothermic response was significantly attenuated compared to wild-type controls with maximal mean Tb difference of 1.0°C between the genotypes (p = 0.008). Pretreatment of rats with a TRPA1 antagonist (A967079) also attenuated the NH4Cl-induced Tb drop with a maximal difference of 0.7°C between the pretreatment groups (p = 0.003). SIGNIFICANCE TRPV1 channels limit, whereas TRPA1 channels exaggerate the development of NH4Cl-induced hypothermia in rats and mice, but other mechanisms are also involved. Our results warrant for regular Tb control and careful consideration of NH4Cl treatment in patients with TRPA1 and TRPV1 channel dysfunctions.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Bibor Gardos
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Krisztian Klonfar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs H-7624, Hungary.
| |
Collapse
|
3
|
Kelava L, Ivić I, Pakai E, Fekete K, Maroti P, Told R, Ujfalusi Z, Garami A. Stereolithography 3D Printing of a Heat Exchanger for Advanced Temperature Control in Wire Myography. Polymers (Basel) 2022; 14:polym14030471. [PMID: 35160461 PMCID: PMC8839612 DOI: 10.3390/polym14030471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
We report the additive manufacturing of a heat-exchange device that can be used as a cooling accessory in a wire myograph. Wire myography is used for measuring vasomotor responses in small resistance arteries; however, the commercially available devices are not capable of active cooling. Here, we critically evaluated a transparent resin material, in terms of mechanical, structural, and thermal behavior. Tensile strength tests (67.66 ± 1.31 MPa), Charpy impact strength test (20.70 ± 2.30 kJ/m2), and Shore D hardness measurements (83.0 ± 0.47) underlined the mechanical stability of the material, supported by digital microscopy, which revealed a glass-like structure. Differential scanning calorimetry with thermogravimetry analysis and thermal conductivity measurements showed heat stability until ~250 °C and effective heat insulation. The 3D-printed heat exchanger was tested in thermophysiology experiments measuring the vasomotor responses of rat tail arteries at different temperatures (13, 16, and 36 °C). The heat-exchange device was successfully used as an accessory of the wire myograph system to cool down the experimental chambers and steadily maintain the targeted temperatures. We observed temperature-dependent differences in the vasoconstriction induced by phenylephrine and KCl. In conclusion, the transparent resin material can be used in additive manufacturing of heat-exchange devices for biomedical research, such as wire myography. Our animal experiments underline the importance of temperature-dependent physiological mechanisms, which should be further studied to understand the background of the thermal changes and their consequences.
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Ivan Ivić
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Peter Maroti
- Medical Simulation Education Center, Medical School, University of Pecs, H-7624 Pecs, Hungary
- 3D Printing and Visualization Center, University of Pecs, H-7624 Pecs, Hungary
| | - Roland Told
- Medical Simulation Education Center, Medical School, University of Pecs, H-7624 Pecs, Hungary
- 3D Printing and Visualization Center, University of Pecs, H-7624 Pecs, Hungary
| | - Zoltan Ujfalusi
- Department of Biophysics, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary
| |
Collapse
|
4
|
Smith CJ, Craighead DH, Alexander LM. Effects of vehicle microdialysis solutions on cutaneous vascular responses to local heating. J Appl Physiol (1985) 2017; 123:1461-1467. [PMID: 28860170 DOI: 10.1152/japplphysiol.00498.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microdialysis is a minimally invasive technique often paired with laser Doppler flowmetry to examine cutaneous microvascular function, yet presents with several challenges, including incompatibility with perfusion of highly lipophilic compounds. The present study addresses this methodological concern, with an emphasis on the independent effects of commonly used vehicle dialysis solutions to improve solubility of pharmacological agents with otherwise low aqueous solubility. Four microdialysis fibers were placed in the ventral forearm of eight subjects (4 men, 4 women; 25 ± 1 yr) with sites randomized to serve as 1) control (lactated Ringer's), 2) Sodium carbonate-bicarbonate buffer administered at physiological pH [SCB-HCl; pH 7.4, achieved via addition of hydrochloric acid (HCl)], 3) 0.02% ethanol, and 4) 2% dimethyl sulfoxide (DMSO). After baseline (34°C), vehicle solutions were administered throughout a standardized local heating protocol to 42°C. Laser Doppler flowmetry provided an index of blood flow. Cutaneous vascular conductance was calculated and normalized to maximum (%CVCmax, sodium nitroprusside and 43°C local heat). The SCB-HCl solution increased baseline %CVCmax (control: 9.7 ± 0.8; SCB-HCl: 21.5 ± 3.5%CVCmax; P = 0.03), but no effects were observed during heating or maximal vasodilation. There were no differences with perfusion of ethanol or DMSO at any stage of the protocol ( P > 0.05). These data demonstrate the potential confounding effects of some vehicle dialysis solutions on cutaneous vascular function. Notably, this study provides evidence that 2% DMSO and 0.02% ethanol are acceptable vehicles with no confounding local vascular effects to a standardized local heating protocol at the concentrations presented. NEW & NOTEWORTHY This study examined the independent effects of common vehicle solutions on cutaneous vascular responses. A basic buffer (SCB-HCl) caused baseline vasodilation; 2% DMSO and 0.02% ethanol had no effects. This highlights the need for considering potential confounding effects of solubilizing solutions when combined with low aqueous soluble pharmacological agents. Importantly, DMSO and ethanol do not appear to influence cutaneous vascular function during baseline or local heating at the concentrations studied, allowing their use without confounding effects.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Daniel H Craighead
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|