1
|
Kostinova AM, Latysheva EA, Kostinov MP, Akhmatova NK, Skhodova SA, Vlasenko AE, Cherdantsev AP, Soloveva IL, Khrapunova IA, Loktionova MN, Khromova EA, Poddubikov AA. Comparison of Post-Vaccination Cellular Immune Response in Patients with Common Variable Immune Deficiency. Vaccines (Basel) 2024; 12:843. [PMID: 39203969 PMCID: PMC11360582 DOI: 10.3390/vaccines12080843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND The problem of identifying vaccine-specific T-cell responses is still a matter of debate. Currently, there are no universal, clearly defined, agreed upon criteria for assessing the effectiveness of vaccinations and their immunogenicity for the cellular component of immunity, even for healthy people. But for patients with inborn errors of immunity (IEI), especially those with antibody deficiencies, evaluating cellular immunity holds significant importance. AIM To examine the effect of one and two doses of inactivated adjuvanted subunit influenza vaccines on the expression of endosomal Toll-like receptors (TLRs) on the immune cells and the primary lymphocyte subpopulations in patients with common variable immunodeficiency (CVID). MATERIALS AND METHODS During 2018-2019, six CVID patients received one dose of a quadrivalent adjuvanted influenza vaccine; in 2019-2020, nine patients were vaccinated with two doses of a trivalent inactivated influenza vaccine. The proportion of key lymphocyte subpopulations and expression levels of TLRs were analyzed using flow cytometry with monoclonal antibodies. RESULTS No statistically significant alterations in the absolute values of the main lymphocyte subpopulations were observed in CVID patients before or after vaccination with the different immunization protocols. However, after vaccination, a higher expression of TLR3 and TLR9 in granulocytes, monocytes, and lymphocytes was found in those patients who received two vaccine doses rather than one single dose. CONCLUSION This study marks the first instance of using a simultaneous two-dose vaccination, which is associated with an elevated level of TLR expression in the immune cells. Administration of the adjuvanted vaccines in CVID patients appears promising. Further research into their impact on innate immunity and the development of more effective vaccination regimens is warranted.
Collapse
Affiliation(s)
- Aristitsa Mikhailovna Kostinova
- Federal State Autonomous Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, 119991 Moscow, Russia
- National Research Center Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Shosse, 24, 115478 Moscow, Russia
| | - Elena Alexandrovna Latysheva
- National Research Center Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Shosse, 24, 115478 Moscow, Russia
- Faculty of Medicine and Biology, Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, 117513 Moscow, Russia
| | - Mikhail Petrovich Kostinov
- Federal State Autonomous Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, 119991 Moscow, Russia
- Federal State Budgetary Scientific Institution «I.I. Mechnikov Research Institute of Vaccines and Sera», Malyi Kazenniy Pereulok, 5a, 105064 Moscow, Russia
| | - Nelly Kimovna Akhmatova
- Federal State Budgetary Scientific Institution «I.I. Mechnikov Research Institute of Vaccines and Sera», Malyi Kazenniy Pereulok, 5a, 105064 Moscow, Russia
| | - Svetlana Anatolyevna Skhodova
- Federal State Budgetary Scientific Institution «I.I. Mechnikov Research Institute of Vaccines and Sera», Malyi Kazenniy Pereulok, 5a, 105064 Moscow, Russia
| | - Anna Egorovna Vlasenko
- Federal State Budgetary Educational Institution, Higher Education “Samara State Medical University” of the Ministry of Healthcare of the Russian Federation, Chapaevskaya Street, 89, 443099 Samara, Russia
| | - Alexander Petrovich Cherdantsev
- Federal State-Funded Educational Institution, Higher Education “Ulyanovsk State University”, Leo Tolstoy Street, 42, 432017 Ulyanovsk, Russia; (A.P.C.)
| | - Irina Leonidovna Soloveva
- Federal State-Funded Educational Institution, Higher Education “Ulyanovsk State University”, Leo Tolstoy Street, 42, 432017 Ulyanovsk, Russia; (A.P.C.)
| | - Isabella Abramovna Khrapunova
- Federal State Autonomous Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, 119991 Moscow, Russia
| | - Marina Nikolaevna Loktionova
- Federal State Autonomous Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, 119991 Moscow, Russia
- Federal Budget Institute of Science “Central Research Institute of Epidemiology” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, st. Novogireevskaya, 3a, 111123 Moscow, Russia
| | - Ekaterina Alexandrovna Khromova
- Federal State Budgetary Scientific Institution «I.I. Mechnikov Research Institute of Vaccines and Sera», Malyi Kazenniy Pereulok, 5a, 105064 Moscow, Russia
| | - Arseniy Alexandrovich Poddubikov
- Federal State Autonomous Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, 119991 Moscow, Russia
| |
Collapse
|
2
|
Eremija J, Patel S, Rice S, Daines M. Intravenous immunoglobulin treatment improves multiple neuropsychiatric outcomes in patients with pediatric acute-onset neuropsychiatric syndrome. Front Pediatr 2023; 11:1229150. [PMID: 37908968 PMCID: PMC10613689 DOI: 10.3389/fped.2023.1229150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS) is defined by acute onset of diverse neuropsychiatric manifestations, presumably in the setting of underlying immune dysfunction. We used standardized neuropsychological testing to assess how intravenous immunoglobulins (IVIG) impact neurological and cognitive functions in PANS patients by comparing pretreatment with post-treatment scores. A 5-year retrospective study was undertaken in Children's Postinfectious Autoimmune Encephalopathy Center at University of Arizona. We identified 12 children diagnosed with PANS and treated with immunomodulatory IVIG doses, who also completed neuropsychological testing before and after treatment. We tracked multiple patient characteristics, type/timeline of testing, and number of IVIG courses. Score change of 1 standard deviation in any tested domain/subdomain was considered improvement. We further reviewed records for laboratory signs of triggering infection and immune dysfunction. Improvement occurred in 11/12 patients, in one or multiple domains/subdomains, independently of time between disease onset and IVIG initiation (0-7 years). Participants received 1-7 IVIG courses. Improvement was primarily seen in memory (58%), sensory-motor (37%) and visual-motor integration (30%). In 5/12 patients we detected hypogammaglobulinemia requiring ongoing IVIG replacement, one patient had isolated low IgA. Only one patient had to discontinue IVIG therapy due to severe adverse effects. Standardized neuropsychological testing represents an important tool to objectively measure improvement in PANS patients. IVIG was tolerated well and showed efficacy in the vast majority of participants, independently from timelapse since disease onset, emphasizing impact of immunomodulation in PANS. Significant presence of baseline hypogammaglobulinemia in children with PANS emphasizes the presumed role of immune dysfunction in disease pathogenesis.
Collapse
Affiliation(s)
- Jelena Eremija
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Sanjay Patel
- Department of Internal Medicine, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Sydney Rice
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Michael Daines
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
LaBere B, Chu A, Platt CD, Chou J. The Integration of Patient-Reported Quality of Life and Systemic Biomarkers in Patients with Immune Dysregulation. RESEARCH SQUARE 2023:rs.3.rs-3270389. [PMID: 37674702 PMCID: PMC10479437 DOI: 10.21203/rs.3.rs-3270389/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Patient-reported quality of life measurements are an important method for improving the treatment of patients with a variety of diseases. These tools have been minimally investigated in patients with inborn errors of immunity (IEI). Patients with IEI may have immune dysregulation and autoimmune-mediated multi-system organ involvement, making treatment optimization vitally important. Routine laboratory and radiologic testing are typically used for treatment monitoring; however, these modalities have the potential to miss early organ damage. T follicular helper cells are T cells that contribute to antibody production and are known to be expanded in patients with active autoimmunity. We hypothesized that a combination of patient-reported quality of life measurements, in addition to T follicular helper cell percentages, would help us to better understand the level of disease activity in patients with IEI and autoimmunity. Methods Patients with immune dysregulation were consented to provide a blood sample and to complete a questionnaire. The Centers for Disease Control HRQOL-14 tool was utilized for the questionnaire portion, and T follicular helper cell levels were measured from whole blood using surface staining and flow cytometry analysis. Patient disease activity was abstracted from the patient medical record, and this was compared to the questionnaire and whole blood assay results. Results A total of 20 patients participated in the study; 8 patients had active disease and the remaining were found to be quiescent. There was no significant difference between the patient-reported general health ratings based on sex, age, disease activity, or category of immune dysregulation (p > 0.05). The cTfh percentages were expanded in patients with active disease as compared to those with quiescent (p < 0.05). However, there was no significant correlation between cTfh percentage and patient-reported unhealthy days from the questionnaire (R2 = 0.113, p > 0.05). Conclusions Patients with active immune dysregulation were found to have expanded cTfh percentages as compared to those with quiescent disease, however this was not reflected in patient-reported quality of life questionnaires. Better understanding of disease activity and the patient experience is vital to optimize appropriate treatments and outcomes for patients with IEI and immune dysregulation, and more investigation is needed.
Collapse
|
4
|
Pieniawska-Śmiech K, Lewandowicz-Uszyńska A, Zemelka-Wiacek M, Jutel M. Assessment of autoantibodies in paediatric population with primary immunodeficiencies: a pilot study. BMC Immunol 2023; 24:8. [PMID: 37270495 DOI: 10.1186/s12865-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The correlation between primary immunodeficiencies (PIDs) and autoimmunity shows ethnic and geographical diversity. The aim of our study was to accumulate more data in paediatric PID population. METHODS 58 children aged 1-17 and with PID (study group) and 14 age-matched immunocompetent individuals (control group) were included in the study. Serum levels of 17 different specific IgG antibodies against autoantigens were measured by means of a quantitative enzyme immunoassay. Immunoglobulin levels were analysed in relation to a detailed medical examination. RESULTS Autoantibodies against one or more antigens were detected in the sera of 24.14% (n = 14) subjects in the study group. The most frequent were anti-thyroid peroxidase (anti-TPO) antibodies (n = 8; 13.8%). Anti-TPO antibody levels were elevated more often in PID patients with a positive family history of autoimmune diseases (p = 0.04). The screening for anti-deamidated gliadin peptide (DGP) and anti-tissue transglutaminase (tTG) antibodies in our series allowed identifying two previously undiagnosed cases of coeliac disease in PID patients. There was no statistically significant difference between the study and the control group in terms of the autoantibodies prevalence. CONCLUSIONS This study provides data on the prevalence of autoantibodies in paediatric population diagnosed with PID. Selected autoantibodies (i.e. anti-tTG, anti-DGP) might be useful for the screening of PID to avoid the delay of diagnosis of an autoimmune disease.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J.Gromkowski, 51-149, Wroclaw, Poland.
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J.Gromkowski, 51-149, Wroclaw, Poland
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367, Wroclaw, Poland
| | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
- ALL-MED Research Institute, 53-201, Wroclaw, Poland.
| |
Collapse
|
5
|
The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages. J Clin Immunol 2023; 43:819-834. [PMID: 36790564 PMCID: PMC10110688 DOI: 10.1007/s10875-023-01442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. METHODS Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. RESULTS A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. CONCLUSION Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity.
Collapse
|
6
|
Abolhassani H, Delavari S, Landegren N, Shokri S, Bastard P, Du L, Zuo F, Hajebi R, Abolnezhadian F, Iranparast S, Modaresi M, Vosughimotlagh A, Salami F, Aranda-Guillén M, Cobat A, Marcotte H, Zhang SY, Zhang Q, Rezaei N, Casanova JL, Kämpe O, Hammarström L, Pan-Hammarström Q. Genetic and immunologic evaluation of children with inborn errors of immunity and severe or critical COVID-19. J Allergy Clin Immunol 2022; 150:1059-1073. [PMID: 36113674 PMCID: PMC9472457 DOI: 10.1016/j.jaci.2022.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children. OBJECTIVE We evaluated 31 young patients aged 0.5 to 19 years who had preexisting inborn errors of immunity (IEI) but lacked a molecular diagnosis and were later diagnosed with coronavirus disease 2019 (COVID-19) complications. METHODS Genetic evaluation by whole-exome sequencing was performed in all patients. SARS-CoV-2-specific antibodies, autoantibodies against type I IFN (IFN-I), and inflammatory factors in plasma were measured. We also reviewed COVID-19 disease severity/outcome in reported IEI patients. RESULTS A potential genetic cause of the IEI was identified in 28 patients (90.3%), including mutations that may affect IFN signaling, T- and B-cell function, the inflammasome, and the complement system. From tested patients 65.5% had detectable virus-specific antibodies, and 6.8% had autoantibodies neutralizing IFN-I. Five patients (16.1%) fulfilled the diagnostic criteria of multisystem inflammatory syndrome in children. Eleven patients (35.4%) died of COVID-19 complications. All together, at least 381 IEI children with COVID-19 have been reported in the literature to date. Although many patients with asymptomatic or mild disease may not have been reported, severe presentation of COVID-19 was observed in 23.6% of the published cases, and the mortality rate was 8.7%. CONCLUSIONS Young patients with preexisting IEI may have higher mortality than children without IEI when infected with SARS-CoV-2. Elucidating the genetic basis of IEI patients with severe/critical COVID-19 may help to develop better strategies for prevention and treatment of severe COVID-19 disease and complications in pediatric patients.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Huddinge, Sweden; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nils Landegren
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sima Shokri
- Department of Pediatrics, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Huddinge, Sweden
| | - Fanglei Zuo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Huddinge, Sweden
| | - Reza Hajebi
- Department of General Surgery, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Iranparast
- Department of Immunology, Faculty of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Modaresi
- Division of Pediatrics Pulmonary Disease, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vosughimotlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maribel Aranda-Guillén
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Huddinge, Sweden
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Olle Kämpe
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Huddinge, Sweden.
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Huddinge, Sweden.
| |
Collapse
|
7
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J Clin Med 2022; 11:4220. [PMID: 35887984 PMCID: PMC9324612 DOI: 10.3390/jcm11144220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Inborn errors of immunity (IEI), formerly known as primary immunodeficiency disorders (PIDs), are inherited disorders caused by damaging germline variants in single genes, which result in increased susceptibility to infections and in allergic, autoimmune, autoinflammatory, nonmalignant lymphoproliferative, and neoplastic conditions. Along with well-known warning signs of PID, attention should be paid to signs of immune dysregulation, which seem to be equally important to susceptibility to infection in defining IEI. The modern diagnostics of IEI offer a variety of approaches but with some problems. The aim of this review is to discuss the diagnostic challenges in IEI patients in the context of an immune dysregulation background.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
| | - Gerard Pasternak
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
9
|
Abubakar SD, Ihim SA, Farshchi A, Maleknia S, Abdullahi H, Sasaki T, Azizi G. The role of TNF-α and anti-TNF-α agents in the immunopathogenesis and management of immune dysregulation in primary immunodeficiency diseases. Immunopharmacol Immunotoxicol 2022; 44:147-156. [DOI: 10.1080/08923973.2021.2023173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | - Amir Farshchi
- Biopharmaceutical Research Center, AryoGen Pharmed Inc, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamisu Abdullahi
- Department of Immunology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Shruthi T, Ravindran D, Mugunthan RR, Jayaraman D. Severe diabetic ketoacidosis and autoimmune pancreatitis with SIRS in an adolescent with LRBA deficiency – A rare complication of a common primary immunodeficiency disease. J Family Med Prim Care 2022; 11:1552-1554. [PMID: 35516664 PMCID: PMC9067192 DOI: 10.4103/jfmpc.jfmpc_1220_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Common variable immunodeficiency is the most common primary immunodeficiency disorder. Lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA) deficiency is categorized as a common variable immunodeficiency associated with autoimmune manifestations and inflammatory bowel diseases. We report a rare case, an adolescent presenting with severe diabetic ketoacidosis (DKA) and acute pancreatitis with multiorgan dysfunction with common variable immunodeficiency (CVID) with homozygous LRBA mutation.
Collapse
|
11
|
The pediatric common variable immunodeficiency - from genetics to therapy: a review. Eur J Pediatr 2022; 181:1371-1383. [PMID: 34939152 PMCID: PMC8964589 DOI: 10.1007/s00431-021-04287-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
UNLABELLED Common variable immunodeficiency (CVID) is the most prevalent antibody deficiency, characterized by remarkable genetic, immunological, and clinical heterogeneity. The diagnosis of pediatric CVID is challenging due to the immaturity of the immune response and sustained actively developing antibody affinity to antigens and immunological memory that may overlap with the inborn error of immunity. Significant progress has been recently done in the field of immunogenetics, yet a paucity of experimental and clinical studies on different systemic manifestations and immunological features of CVID in children may contribute to a delayed diagnosis and therapy. In this review, we aimed at defining the variable epidemiological, etiological, and clinical aspects of pediatric CVID with special emphasis on predominating infectious and non-infectious phenotypes in affected children. CONCLUSION While pediatric CVID is a multifaceted and notorious disease, increasing the pediatricians' awareness of this disease entity and preventing the diagnostic and therapeutic delay are needed, thereby improving the prognosis and survival of pediatric CVID patients. WHAT IS KNOWN • CVID is an umbrella diagnosis characterized by complex pathophysiology with an antibody deficiency as a common denominator. • It is a multifaceted disease characterized by marked genetic, immunological, and clinical heterogeneity.. WHAT IS NEW • The diagnosis of pediatric CVID is challenging due to the immaturity of innate and adaptive immune response. • Increasing the pediatricians' awareness of CVID for the early disease recognition, timely therapeutic intervention, and improving the prognosis is needed.
Collapse
|
12
|
Tian EM, Yu MC, Feng M, Lu LX, Liu CL, Shen LA, Wang YH, Xie Q, Zhu D. RORγt agonist synergizes with CTLA-4 antibody to inhibit tumor growth through inhibition of Treg cells via TGF-β signaling in cancer. Pharmacol Res 2021; 172:105793. [PMID: 34339836 DOI: 10.1016/j.phrs.2021.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
To date, the overall response rate to checkpoint blockade remains unsatisfactory, partially due to the limited understanding of the tumor immune microenvironment. The retinoic acid-related orphan receptor γt (RORγt) is the key transcription factor of T helper cell 17 (Th17) cells and plays an essential role in tumor immunity. In this study, we used JG-1, a potent and selective small-molecule RORγt agonist to evaluate the therapeutic potential and mechanism of action of targeting RORγt in tumor immunity. JG-1 promotes Th17 cells differentiation and inhibition of regulatory T (Treg) cells differentiation. JG-1 demonstrates robust tumor growth inhibition in multiple syngeneic models and shows a synergic effect with the Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) antibody. In tumors, JG-1 not only promotes Th17 cells differentiation and increases C-C Motif Chemokine Receptor 6 (CCR6)- Chemokine (C-C motif) ligand 20 (CCL20) expression, but also inhibits both the expression of transforming growth factor-β1 (TGF-β1) and the differentiation and infiltration of Treg cells. In summary, JG-1 is a lead compound showing a potent activity in vitro and robust tumor growth inhibition in vivo with synergetic effects with anti-CTLA-4.
Collapse
Affiliation(s)
- En-Ming Tian
- Department of Pharmacology, School of Basic Medical Sciences, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming-Cheng Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mei Feng
- Department of Pharmacology, School of Basic Medical Sciences, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-Xue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cheng-Long Liu
- Department of Pharmacology, School of Basic Medical Sciences, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-An Shen
- Department of Pharmacology, School of Basic Medical Sciences, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yong-Hui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Di Zhu
- Department of Pharmacology, School of Basic Medical Sciences, School of Pharmacy, Fudan University, Shanghai 201203, China; School of Basic Medical Sciences, Fudan Unvieristy, Shanghai 200032, China.
| |
Collapse
|
13
|
Rizvi FS, Zainaldain H, Rafiemanesh H, Jamee M, Hossein-Khannazer N, Hamedifar H, Sabzevari A, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Autoimmunity in common variable immunodeficiency: a systematic review and meta-analysis. Expert Rev Clin Immunol 2020; 16:1227-1235. [PMID: 33203275 DOI: 10.1080/1744666x.2021.1850272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity characterized by variable clinical manifestations. Methods: Web of Science, Scopus, and PubMed databases were searched systemically to find eligible studies from the earliest available date to February 2020 with standard keywords. Pooled estimates of the autoimmunity prevalence and the corresponding 95% confidence intervals (CI) were calculated using random-effects models. Results: The overall prevalence of autoimmunity was 29.8% (95% CI: 26.4-33.3; I2 = 82.8%). The prevalences of hematologic autoimmune diseases, autoimmune gastrointestinal disorders, autoimmune rheumatologic disorders, autoimmune skin disorders, and autoimmune endocrinopathy in CVID patients were 18.9%, 11.5%, 6.4%, 5.9%), and 2.5%, respectively. There were significantly higher lymphocyte, CD3 + T cell, and CD4 + T cell count among CVID patients without autoimmunity (p< 0.05). Furthermore, failure to thrive, organomegaly, enteropathy, and meningitis was significantly higher in CVID patients with autoimmunity(p< 0.05). Conclusions: Many CVID patients could present with autoimmunity as part of the disease or even as the first or only clinical manifestation of the disease. Care providers may need to pay particular attention to the possible association of these two disorders since the co-occurrence of CVID and autoimmunity could be a misleading clue.
Collapse
Affiliation(s)
- Fatema Sadaat Rizvi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Hamed Zainaldain
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences , Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences , Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences , Karaj, Iran.,CinnaGen Research and Production Co ., Alborz, Iran
| | - Araz Sabzevari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences , Karaj, Iran.,Orchid Pharmed Company , Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences , Karaj, Iran
| |
Collapse
|
14
|
Qureshi S, Mir F, Junejo S, Saleem K, Zaidi S, Naveed AB, Ahmad K, Qamar FN. The spectrum of primary immunodeficiencies at a tertiary care hospital in Pakistan. World Allergy Organ J 2020; 13:100133. [PMID: 32793328 PMCID: PMC7414008 DOI: 10.1016/j.waojou.2020.100133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
Background Primary Immunodeficiency Disorders (PIDs) are well-known disorders in the West. but the recognition and diagnosis of these disorders is challenging in developing countries. We present the spectrum of PIDs seen at a tertiary care center in Pakistan, identified using clinical case definitions and molecular methods. Methods A retrospective chart review of children suspected to have PID was conducted at the Aga Khan University Hospital (AKUH) Karachi, Pakistan from 2010 to 2016. Data on demographics, clinical features, family history of consanguinity, sibling death, details of laboratory workup done for PID and molecular tests targeted panel next generation sequencing (NGS) or whole exome sequencing (WES) performed at the Geha laboratory at Boston Children’s Hospital, USA was collected. The study was exempted from the Ethical Review Committee of AKUH. Results A total of 43 children visited the hospital with suspected PID during the study period. Genetic testing was performed in 31/43 (72.1%) children. A confirmed diagnosis of PID was established in 20/43 (46.5%) children. A pathogenic gene variant was identified in 17(85%) of the 20 confirmed cases (Table 1). Twelve (60%) of the confirmed cases of PID were male. The most common presenting symptom was recurrent diarrhea 11/20 (55%). The mean (±S.D) age of the cases at the time of diagnosis was 4.2 (±4.1) years. Chronic granulomatous disease (CGD) was the most common 6/20 (30%) disorder, followed by severe combined immunodeficiency (SCID) 3/20 (15%), leukocyte adhesion deficiency (LAD) 3/20 (15%), agammaglobulinemia/hypogammaglobulinemia 3/20 (15%), and Hermansky-Pudlak Syndrome (HPS) 2/20 (10%). Wiskott-Aldrich Syndrome, Immunodeficiency Centromeric Instability and Facial Anomalies Syndrome (ICF 2), Trichohepatoenteric syndrome (TRES), and C3 deficiency were each diagnosed once {1/20 (4.3%) each} (Table 1). Of these 20 confirmed cases, almost all 19/20 (95%) had a family history of consanguinity. Sibling death was reported in 5/20 (25%) of these cases. Five out of the 20 (25%) children died over the 7-year period for various reasons. Conclusion PIDs are not uncommon in Pakistan; their diagnosis may be missed or delayed due to the overlapping of clinical features of PID with other diseases and a lack of diagnostic facilities. There is a need to build capacity for early recognition and diagnosis of PIDs to decrease morbidity and mortality.
Collapse
Key Words
- AFIP, Armed Forces Institute of Pathology
- ARDS, Acute Respiratory Distress Syndrome
- BCG, Bacille Calmette-Guerin
- BMT, Bone Marrow Transplant
- CGD, Chronic Granulomatous Disease
- Children
- Chronic granulomatous disease
- Consanguineous marriages
- DHR, Dihydrorhodamine
- HPS, Hermansky-Pudlak Syndrome
- I/V, Intravenous
- ICF-2, Immunodeficiency Centromeric Instability and Facial Anomalies Syndrome
- LAD, Leukocyte Adhesion Deficiency
- LMIC, Low Middle Income Countries
- NBT, Nitrotetrazolium blue test
- NGS, Next-Generation Sequencing
- OPV, Oral Polio Vaccine
- PIDs, Primary Immunodeficiency Disorders
- Primary immunodeficiency disorders
- S/C, Subcutaneous
- SCID, Severe Combined Immunodeficiency Disorder
- TRES, Trichohepatoenteric syndrome
- USA, United States of America
- VDP, Vaccine Derived Poliovirus
- WES, Whole Exome Sequencing
Collapse
Affiliation(s)
- Sonia Qureshi
- Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Fatima Mir
- Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Samina Junejo
- Department of Pediatrics, The Indus Hospital, Korangi Road, Karachi, Pakistan
| | - Khalid Saleem
- Children's Hospital and The Institute of Child Health, Multan, Pakistan
| | - Samreen Zaidi
- National Institute of Blood Disease & Bone Marrow Transplantation, P.E.C.H.S, Karachi, Pakistan
| | - Abdullah B Naveed
- Medical College, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Khalil Ahmad
- Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| |
Collapse
|
15
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
16
|
Rheumatological manifestations in inborn errors of immunity. Pediatr Res 2020; 87:293-299. [PMID: 31581173 DOI: 10.1038/s41390-019-0600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Rare monogenetic diseases serve as natural models to dissect the molecular pathophysiology of the complex disease traits. Rheumatologic disorders by their nature are considered complex diseases with partially genetic origin, as illustrated by their heterogeneous genetic background and variable phenotypic presentation. Recent advances in genetic technologies have helped uncover multiple variants associated with disease susceptibility; however, a precise understanding of genotype-phenotype relationships is still missing. Inborn errors of immunity (IEIs), in addition to recurrent infections, may also present with autoimmune and autoinflammatory rheumatologic manifestations and have provided insights for understanding the underlying the principles of immune system homeostasis and mechanisms of immune dysregulation. This review discusses the rheumatologic manifestations in IEIs with overlapping and differentiating features in immunodeficiencies and rheumatologic disorders.
Collapse
|
17
|
Lewandowicz-Uszyńska A, Pasternak G, Świerkot J, Bogunia-Kubik K. Primary Immunodeficiencies: Diseases of Children and Adults - A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1289:37-54. [PMID: 32803731 DOI: 10.1007/5584_2020_556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) belong to a group of rare congenital diseases occurring all over the world that may be seen in both children and adults. In most cases, genetic predispositions are already known. As shown in this review, genetic abnormalities may be related to dysfunction of the immune system, which manifests itself as recurrent infections, increased risk of cancer, and autoimmune diseases. This article reviews the various forms of PIDs, including their characterization, management strategies, and complications. Novel aspects of the diagnostics and monitoring of PIDs are presented.
Collapse
Affiliation(s)
- Aleksandra Lewandowicz-Uszyńska
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland. .,Department of Immunology and Pediatrics, The J. Gromkowski Provincial Hospital, Wroclaw, Poland.
| | - Gerard Pasternak
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Świerkot
- Department and Clinic of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, The Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
18
|
Joud Hajjar, Nguyen AL, Constantine G, Kutac C, Syed MN, Orange JS, Sullivan KE. Prophylactic Antibiotics Versus Immunoglobulin Replacement in Specific Antibody Deficiency. J Clin Immunol 2019; 40:158-164. [PMID: 31758281 DOI: 10.1007/s10875-019-00716-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Prophylactic antibiotics (PA) and immunoglobulin replacement (IGRT) are commonly used in specific antibody deficiency (SAD); however, optimal treatment is not well-established. Our purpose is to compare treatment outcomes with IGRT and/or PA among SAD patients. METHODS A retrospective chart review of SAD patients treated at two tertiary centers between January 2012 and May 2017 was performed. Clinical and laboratory data, and rates of infections prior to and after treatment with IGRT or PA were analyzed. Descriptive analyses, between-group comparisons of rates of infection after 1 year of treatment, and a stepwise logistic regression model were employed to explore factors contributing to treatment outcomes. RESULTS We identified 65 SAD patients with mean age were 18 years (2-71 years). The baseline mean number of infections in the PA group and IGRT group was 4.71 (SD 3.15) and 7.73 (SD 6.65), respectively. Twenty-nine (44.6%) received IGRT, 7 (10.7%) received PA, 7 (10.7%) received both IGRT and PA, 15 (23.1%) failed PA and switched to IGRT, and 7 did not receive any specific treatment. After 1 year of treatment, the difference in the mean number of infections in PA vs. IGRT was not statistically significant [2.86 (2.73) vs. 4.44 (4.74), p = 0.27]. Reporting autoimmunity increased the odds for persistent infections (OR = 4.29; p = 0.047), while higher IgG levels decreased the odds for persistent infections (OR = 0.68, p = 0.018). CONCLUSIONS PA and IGRT are equally effective as first line in preventing infections in SAD patients. However, patients who fail PA would benefit from IGRT.
Collapse
Affiliation(s)
- Joud Hajjar
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Section of Immunology, 1102 Bates St. FC 330, Houston, TX, 77030, USA. .,The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA.
| | | | | | - Carleigh Kutac
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Section of Immunology, 1102 Bates St. FC 330, Houston, TX, 77030, USA.,The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA
| | - Maha N Syed
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Section of Immunology, 1102 Bates St. FC 330, Houston, TX, 77030, USA.,The William T Shearer Center for Human Immunobiology at Texas Children's Hospital, Houston, TX, USA
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons Columbia University, New York, NY, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
Mozdarani H, Kiaee F, Fekrvand S, Azizi G, Yazdani R, Zaki-Dizaji M, Mozdarani S, Mozdarani S, Nosrati H, Abolhassani H, Aghamohammadi A. G2-lymphocyte chromosomal radiosensitivity in patients with LPS responsive beige-like anchor protein (LRBA) deficiency. Int J Radiat Biol 2019; 95:680-690. [PMID: 30714845 DOI: 10.1080/09553002.2019.1577570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide-responsive, beige-like anchor protein (LRBA) deficiency is an autosomal recessive primary immunodeficiency disease characterized by a CVID-like phenotype, particularly severe autoimmunity and inflammatory bowel disease. This study was undertaken to evaluate radiation sensitivity in 11 LRBA-deficient patients. Therefore, stimulated lymphocytes of the studied subjects were exposed to a low dose γ-radiation (100 cGy) in the G2 phase of the cell cycle and chromosomal aberrations were scored. Lymphocytes of age-sex matched healthy individuals used in the same way as controls. Based on the G2-assay, six (54.5%) of the patients had higher radiosensitivity score comparing to the healthy control group, forming the radiosensitive LRBA-deficient patients. This chromosomal radiosensitivity showed that these patients are predisposed to autoimmunity and/or malignancy, and should be protected from unnecessary diagnostic and therapeutic procedures using ionizing radiation and exposure to other DNA damaging agents.
Collapse
Affiliation(s)
- Hossein Mozdarani
- a Faculty of Medical Sciences, Department of Medical Genetics , Tarbiat Modares University , Terhran , Iran
| | - Fatemeh Kiaee
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Medical Immunology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saba Fekrvand
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Non-communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran
| | - Reza Yazdani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Majid Zaki-Dizaji
- a Faculty of Medical Sciences, Department of Medical Genetics , Tarbiat Modares University , Terhran , Iran
| | - Sahar Mozdarani
- e Cytogenome Medical Genetics laboratory , Chamran Medical Building , Tehran , Iran
| | - Sohail Mozdarani
- d Non-communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran
| | - Hassan Nosrati
- f Radiotherapy Department , Cancer Institute, Imam Khomeini Hospital , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institutet at the Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
20
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
|
21
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
22
|
Azizi G, Yazdani R, Rae W, Abolhassani H, Rojas M, Aghamohammadi A, Anaya JM. Monogenic polyautoimmunity in primary immunodeficiency diseases. Autoimmun Rev 2018; 17:1028-1039. [PMID: 30107266 DOI: 10.1016/j.autrev.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a large group of genetic disorders that affect distinct components of the immune system. PID patients are susceptible to infection and non-infectious complications, particularly autoimmunity. A specific group of monogenic PIDs are due to mutations in genes that are critical for the regulation of immunological tolerance and immune responses. This group of monogenic PIDs is at high risk of developing polyautoimmunity (i.e., the presence of more than one autoimmune disease in a single patient) because of their impaired immunity. In this review, we discuss the mechanisms of autoimmunity in PIDs and the characteristics of polyautoimmunity in the following PIDs: IPEX; monogenic IPEX-like syndrome; LRBA deficiency; CTLA4 deficiency; APECED; ALPS; and PKCδ deficiency.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wiliam Rae
- Department of Immunology, MP8, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
23
|
Azizi G, Mirshafiey A, Abolhassani H, Yazdani R, Ghanavatinejad A, Noorbakhsh F, Rezaei N, Aghamohammadi A. The imbalance of circulating T helper subsets and regulatory T cells in patients with LRBA deficiency: Correlation with disease severity. J Cell Physiol 2018; 233:8767-8777. [PMID: 29806698 DOI: 10.1002/jcp.26772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/27/2018] [Indexed: 01/24/2023]
Abstract
Patients with lipopolysaccharides responsive beige-like anchor protein (LRBA) deficiency suffer from a variety of immunological abnormalities. In the current study, we investigated the role of T helper (Th) cell subsets and regulatory T (Treg) cells and their related cytokines and transcription factors in the immune dysregulation of LRBA deficiency. The study population comprised of 13 LRBA-deficient patients and 13 age- and sex-matched healthy controls (HCs). Th subsets and Treg were examined by flow cytometry. The expression of determinant cytokines (interferon-γ [IFN-γ], interleukin [IL]-17, IL-22, and IL-10), and cell subset-specific transcription factors were evaluated before and after proliferation and activation stimuli. The frequencies of Th1, Th1-like Th17 and Th22 cells along with the expression of T-box transcription factor (TBET) and runt-related transcription factor 1 (RUNX1) were significantly increased in patients with LRBA. Moreover, IFN-γ and IL-22 production in LRBA-deficient CD4+ T cells were elevated after lymphocyte stimulation, particularly in patients with enteropathy. However, CD4+ CD25+ FoxP3+ CD127- cells were significantly decreased in LRBA-deficient patients compared with those of HCs, particularly in patients with autoimmunity. There was a negative correlation between the frequencies of CD4+ CD25+ FoxP3+ CD127- cells and Th1-like Th17 cells in LRBA-deficient patients, and an overlapping phenotype of autoimmunity and enteropathy were observed in ~70% of patients. The frequency of Th17 cells was lower in patients with enteropathy, while Th1-like Th17 cells were higher than in those without enteropathy. Our findings demonstrated an imbalance in Th subsets, mainly in Th1-like Th17 and Treg cells and their corresponding cytokines in LRBA deficiency, which might be important in the immunopathogenesis of autoimmunity and enteropathy.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Mirshafiey
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Azizi G, Kiaee F, Hedayat E, Yazdani R, Dolatshahi E, Alinia T, Sharifi L, Mohammadi H, Kavosi H, Jadidi-Niaragh F, Ziaee V, Abolhassani H, Aghamohammadi A. Rheumatologic complications in a cohort of 227 patients with common variable immunodeficiency. Scand J Immunol 2018; 87:e12663. [PMID: 29574865 DOI: 10.1111/sji.12663] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/16/2018] [Indexed: 01/11/2023]
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic type of human primary immunodeficiency diseases (PID). Clinically, CVID is characterized by increased susceptibility to infections and a wide variety of autoimmune and rheumatologic disorders. All patients with CVID registered in Iranian PID Registry (IPIDR) were enrolled in this retrospective cohort study. We investigated the frequency of rheumatologic diseases and its association with immunological and clinical phenotypes in patients with CVID. A total of 227 patients with CVID were enrolled in this study. The prevalence of rheumatologic disorders was 10.1% with a higher frequency in women than men. Most common rheumatologic manifestations were juvenile idiopathic arthritis (JIA) and adult rheumatoid arthritis (RA) followed by juvenile spondyloarthritis (JSpA) and undifferentiated inflammatory arthritis (UIA). Septic arthritis in patients with CVID with a history of RA and JIA was higher than patients without rheumatologic complication. Patients with CVID with a history of autoimmunity (both rheumatologic and non-rheumatologic autoimmunity) had lower regulatory T cells counts in comparison with patients without autoimmune disorders. There was an association between defect in specific antibody responses and negative serologic test results in patients with rheumatologic manifestations. JIA, RA, JSpA and UIA are the most frequent rheumatologic disorders in patients with CVID. Due to antibody deficiency, serologic tests may be negative in these patients. Therefore, these conditions pose significant diagnostic and therapeutic challenges for immunologists and rheumatologists in charge of the care for these patients.
Collapse
Affiliation(s)
- G Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - F Kiaee
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - E Hedayat
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - R Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - E Dolatshahi
- Department of Rheumatology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - T Alinia
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - L Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - F Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - V Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
25
|
Azizi G, Abolhassani H, Zaki-Dizaji M, Habibi S, Mohammadi H, Shaghaghi M, Yazdani R, Anaya JM, Rezaei N, Hammarström L, Aghamohammadi A. Polyautoimmunity in Patients with LPS-Responsive Beige-Like Anchor (LRBA) Deficiency. Immunol Invest 2018. [PMID: 29528757 DOI: 10.1080/08820139.2018.1446978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Polyautoimmunity is defined as the presence of more than one autoimmune disorder in a single patient. Lipopolysaccharide (LPS)-responsive beige-like anchor (LRBA) deficiency is one of the monogenic causes of polyautoimmunity. The aim of this study was to report the characteristics of polyautoimmunity in patients with LRBA deficiency. METHODS A total of 14 LRBA deficiency patients with confirmed autoimmunity were enrolled in this study. For those patients with polyautoimmunity, demographic information, clinical records, laboratory, and molecular data were collected. We also compared our results with the currently reported patients with LRBA deficiency associated with polyautoimmunity. RESULTS In 64.2% (9 out of 14) of patients, autoimmunity presented as polyautoimmunity. In these patients, autoimmune cytopenias were the most frequent complication, observed in seven patients. Three patients presented with four different types of autoimmune conditions. The review of the literature showed that 41 of 72 reported LRBA deficient patients (74.5%) had also polyautoimmunity, with a wide spectrum of autoimmune diseases described. Hematopoietic stem cell transplantation is increasingly used as the treatment for patients with severe polyautoimmunity associated to LRBA deficiency. CONCLUSIONS Mutation in LRBA gene is one of the causes of monogenic polyautoimmunity. Awareness of this association is important in order to make an early diagnosis and prompt treatment.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Non-Communicable Diseases Research Center , Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Majid Zaki-Dizaji
- e Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Sima Habibi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hamed Mohammadi
- f Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammadreza Shaghaghi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Reza Yazdani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Juan-Manuel Anaya
- h Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences , Universidad del Rosario , Bogotá , Colombia
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,g Network of Immunology in Infections, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Lennart Hammarström
- d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Primary Immunodeficiency Diseases Network (PIDNet) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
26
|
Mohammadi H, Hemmatzadeh M, Babaie F, Gowhari Shabgah A, Azizi G, Hosseini F, Majidi J, Baradaran B. MicroRNA implications in the etiopathogenesis of ankylosing spondylitis. J Cell Physiol 2018; 233:5564-5573. [PMID: 29377110 DOI: 10.1002/jcp.26500] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic immune-mediated inflammatory disease that affects both axial and peripheral skeletons as well as soft tissues. Recent investigations offer that disease pathogenesis is ascribed to a complex interplay of genetic, environmental, and immunological factors. Until now, there is no appropriate method for early diagnosis of AS and the successful available therapy for AS patients stay largely undefined. MicroRNAs (miRNAs), endogenous small noncoding RNAs controlling the functions of target mRNAs and cellular processes, are present in human plasma in a stable form and have appeared as possible biomarkers for activity, pathogenesis, and prognosis of the disease. In the present review, we have tried to summarize the recent findings related to miRNAs in AS development and discuss the possible utilization of these molecules as prognostic biomarkers or important therapeutic strategies for AS. Further examinations are needed to determine the unique miRNAs signatures in AS and characterize the mechanisms mediated by miRNAs in the pathology of this disease.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Hosseini
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Azizi G, Abolhassani H, Kiaee F, Tavakolinia N, Rafiemanesh H, Yazdani R, Mahdaviani SA, Mohammadikhajehdehi S, Tavakol M, Ziaee V, Negahdari B, Mohammadi J, Mirshafiey A, Aghamohammadi A. Autoimmunity and its association with regulatory T cells and B cell subsets in patients with common variable immunodeficiency. Allergol Immunopathol (Madr) 2018; 46:127-135. [PMID: 28735808 DOI: 10.1016/j.aller.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is one of the most prevalent symptomatic primary immunodeficiencies (PIDs), which manifests a wide clinical variability such as autoimmunity, as well as T cell and B cell abnormalities. METHODS A total of 72 patients with CVID were enrolled in this study. Patients were evaluated for clinical manifestations and classified according to the presence or absence of autoimmune disease. We measured regulatory T cells (Tregs) and B-cell subsets using flow cytometry, as well as specific antibody response (SAR) to pneumococcal vaccine, autoantibodies and anti-IgA in patients. RESULTS Twenty-nine patients (40.3%) have shown at least one autoimmune manifestation. Autoimmune cytopenias and autoimmune gastrointestinal diseases were the most common. A significant association was detected between autoimmunity and presence of hepatomegaly and splenomegaly. Among CVID patients, 38.5% and 79.3% presented a defect in Tregs and switched memory B-cells, respectively, whereas 69.0% presented CD21low B cell expansion. Among patients with a defect in Treg, switched memory and CD21low B cell, the frequency of autoimmunity was 80.0%, 52.2% and 55.0%, respectively. A negative correlation was observed between the frequency of Tregs and CD21low B cell population. 82.2% of patients had a defective SAR which was associated with the lack of autoantibodies. CONCLUSIONS Autoimmunity may be the first clinical manifestation of CVID, thus routine screening of immunoglobulins is suggested for patients with autoimmunity. Lack of SAR in CVID is associated with the lack of specific autoantibodies in patients with autoimmunity. It is suggested that physicians use alternative diagnostic procedures.
Collapse
|
28
|
Mohammadi H, Sharafkandi N, Hemmatzadeh M, Azizi G, Karimi M, Jadidi-Niaragh F, Baradaran B, Babaloo Z. The role of innate lymphoid cells in health and disease. J Cell Physiol 2018; 233:4512-4529. [PMID: 29058773 DOI: 10.1002/jcp.26250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are kind of innate immune cells which can be divided into three main subsets according to their cytokine release profile, transcription factors, and surface markers. ILCs affect the initial stages of immunity in response to microbes and participate in immunity, inflammation, and tissue repair. ILCs modulate immunity through resistance to the pathogens and regulation of autoimmune inflammation and metabolic homeostasis. Therefore dysregulation of ILCs may lead to chronic pathologies such as allergies (i.e., asthma), inflammation (i.e., inflammatory bowel disease), and autoimmunity (i.e., psoriasis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, and ankylosing spondylitis). Regarding the critical role of ILCs in the regulation of immune system, the elucidation of their function in different conditions makes an interesting target for improvement of novel therapeutic approach to modulate an immune response in different disease context.
Collapse
Affiliation(s)
- Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev 2017; 16:1209-1218. [PMID: 29037907 DOI: 10.1016/j.autrev.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Interleukin-22 (IL22) is one of the members of IL10 family. Elevated levels of this cytokine can be seen in diseases caused by T lymphocytes, such as Psoriasis, Rheumatoid arthritis, interstitial lung diseases. IL22 is produced by different cells in both innate and acquired immunities. Different types of T cells are able to produce IL22, but the major IL22-producing T-cell is the TCD4. TH22 cell is a new line of TCD4 cells, which differentiated from naive T cells in the presence of TNFα and IL6; 50% of peripheral blood IL22 is produced by these cells. IL22 has important functions in host defense at mucosal surfaces as well as in tissue repair. In this review, we assess the current understanding of this cytokine and focus on the possible roles of IL-22 in autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Blood Borne Infections Research Center, AcademicCenter for Education, Culture and Research (ACECR), Razavi Khorasan Branch,Mashhad, Iran
| | - Jamshid Gholizadeh Navashenaq
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical sciencesfaculty, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mohammadi
- ImmunologyResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- BiotechnologyResearch Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, Azizi G, Baradaran B. The paradox of Th17 cell functions in tumor immunity. Cell Immunol 2017; 322:15-25. [PMID: 29103586 DOI: 10.1016/j.cellimm.2017.10.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 02/08/2023]
Abstract
Immune system acts as a host defensive mechanism protecting against attacking pathogens and transformed cells, including cancer cells. Th17 cells are a specific subset of T helper lymphocytes determined by high secretion of IL-17 and other inflammatory cytokines. Th17 cells increase tumor progression by activating angiogenesis and immunosuppressive activities. They can also mediate antitumor immune responses through recruiting immune cells into tumors, stimulating effector CD8+ T cells, or surprisingly by altering toward Th1 phenotype and producing IFN-γ, so Th17 cells are supposed as a double-edged sword in cancer. A comprehensive approach to indicating the activity of Th17 cells in tumor progression could help in the planning of new therapeutic approaches specially targeting Th17 cells in cancer.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mahdian-Shakib
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Azizi G, Tavakol M, Rafiemanesh H, Kiaee F, Yazdani R, Heydari A, Abouhamzeh K, Anvari P, Mohammadikhajehdehi S, Sharifia L, Bagheri Y, Mohammadi H, Abolhassani H, Aghamohammadi A. Autoimmunity in a cohort of 471 patients with primary antibody deficiencies. Expert Rev Clin Immunol 2017; 13:1099-1106. [DOI: 10.1080/1744666x.2017.1384312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Students’ Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Heydari
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Abouhamzeh
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Anvari
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Mohammadikhajehdehi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifia
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasser Bagheri
- Student Research Committee, Golstan University of Medical Sciences, Gorgan, Iran
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
32
|
Azizi G, Abolhassani H, Mahdaviani SA, Chavoshzadeh Z, Eshghi P, Yazdani R, Kiaee F, Shaghaghi M, Mohammadi J, Rezaei N, Hammarström L, Aghamohammadi A. Clinical, immunologic, molecular analyses and outcomes of iranian patients with LRBA deficiency: A longitudinal study. Pediatr Allergy Immunol 2017; 28:478-484. [PMID: 28512785 DOI: 10.1111/pai.12735] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a combined immunodeficiency caused by mutation in LRBA gene. The patients have a variety of clinical symptoms including hypogammaglobulinemia, recurrent infections, autoimmunity, and enteropathy. METHODS A total of 17 LRBA-deficient patients were enrolled in this longitudinal study. For all patients, demographic information, clinical records, laboratory, and molecular data were collected. RESULT Hypogammaglobulinemia was reported in 14 (82.4%), CD4+ T-cell deficiency in five (29.4%), NK cell deficiency in three (21.4%), and CD19+ B-cell deficiency in 11 (64.7%) patients. All patients had history of infectious complications; pneumonia was the most common (76.5%) occurring infection. A history of lymphoproliferative disorders was observed in 14 (82.3%), enteropathy in 13 (76.5%), allergic symptoms in six (35.5%), neurologic problems in four (23.5), and autoimmunity (mostly autoimmune cytopenia) in 13 (76.5%) patients. Sirolimus treatment improved enteropathy of patients with remarkable success. The 20-year overall survival rate declined to 70.6%. CONCLUSION LRBA deficiency has a very broad and variable phenotype and should be considered, especially in children with early-onset hypogammaglobulinemia, severe autoimmune manifestations, enteropathy, lymphoproliferation, and recurrent respiratory tract infections.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
33
|
The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother 2017; 91:632-644. [DOI: 10.1016/j.biopha.2017.04.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
|
34
|
Rahmani F, Aghamohammadi A, Ochs HD, Rezaei N. Agammaglobulinemia: comorbidities and long-term therapeutic risks. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1330145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Farzaneh Rahmani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA, USA
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Seattle, WA, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|