1
|
Andorka C, Barta H, Sesztak T, Nyilas N, Kovacs K, Dunai L, Rudas G, Jermendy A, Szabo M, Szakmar E. The predictive value of MRI scores for neurodevelopmental outcome in infants with neonatal encephalopathy. Pediatr Res 2025; 97:253-260. [PMID: 38637693 PMCID: PMC11798823 DOI: 10.1038/s41390-024-03189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND MRI scoring systems are utilized to quantify brain injury and predict outcome in infants with neonatal encephalopathy (NE). Our aim was to evaluate the predictive accuracy of total scores, white matter (WM) and grey matter (GM) subscores of Barkovich and Weeke scoring systems for neurodevelopmental outcome at 2 years of age in infants receiving therapeutic hypothermia for NE. METHODS Data of 162 infants were analyzed in this retrospective cohort study. DeLong tests were used to compare areas under the curve of corresponding items of the two scoring systems. LASSO logistic regression was carried out to evaluate the association between MRI scores and adverse composite (death or severe disabilities), motor and cognitive outcomes (Bayley developmental index <70). RESULTS Weeke scores predicted each outcome measure with greater accuracy than the corresponding items of Barkovich system (DeLong tests p < 0.03). Total scores, GM and cerebellum involvement were associated with increased odds for adverse outcomes, in contrast to WM injury, after adjustment to 5' Apgar score, first postnatal lactate and aEEG normalization within 48 h. CONCLUSION A more detailed scoring system had better predictive value for adverse outcome. GM injury graded on both scoring systems was an independent predictor of each outcome measure. IMPACT STATEMENTS A more detailed MRI scoring system had a better predictive value for motor, cognitive and composite outcomes. While hypoxic-ischemic brain injuries in the deep grey matter and cerebellum were predictive of adverse outcome, white matter injury including cortical involvement was not associated with any of the outcome measures at 2 years of age. Structured MRI evaluation based on validated scores may aid future clinical research, as well as inform parents and caregivers to optimize care beyond the neonatal period.
Collapse
Affiliation(s)
- Csilla Andorka
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Hajnalka Barta
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Timea Sesztak
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
- Department of Neuroradiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Nora Nyilas
- Department of Neuroradiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Kata Kovacs
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Ludovika Dunai
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Gabor Rudas
- Department of Neuroradiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary
| | - Agnes Jermendy
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Miklos Szabo
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary
| | - Eniko Szakmar
- Division of Neonatology, Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Tabacaru C, Braimah A, Kline-Fath B, Parikh N, Merhar S. Diffusion Tensor Imaging to Predict Neurodevelopmental Impairment in Infants after Hypoxic-Ischemic Injury. Am J Perinatol 2024; 41:e1740-e1746. [PMID: 37040878 DOI: 10.1055/a-2071-3057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) is the standard of care for evaluation of brain injury after hypoxic-ischemic encephalopathy (HIE) in term newborns. This study utilizes diffusion tensor imaging (DTI) to (1) identify infants at highest risk of development of cerebral palsy (CP) following HIE and to (2) identify regions of the brain critical to normal fidgety general movements (GMs) at 3 to 4 months of postterm. Absence of these normal, physiological movements is highly predictive of CP. STUDY DESIGN Term infants treated with hypothermia for HIE from January 2017 to December 2021 were consented for participation and had brain MRI with DTI after rewarming. The Prechtl's General Movements Assessment was performed at 12 to 16 weeks of age. Structural MRIs were reviewed for abnormalities, and DTI data were processed with the FMRIB Software Library. Infants underwent the Bayley Scales of Infant and Toddler Development III test at 24 months. RESULTS Forty-five infant families were consented; three infants died prior to MRI and were excluded, and a fourth infant was excluded due to diagnosis of a neuromuscular disorder. Twenty-one infants were excluded due to major movement artifact on diffusion images. Ultimately, 17 infants with normal fidgety GMs were compared with 3 infants with absent fidgety GMs with similar maternal and infant characteristics. Infants with absent fidgety GMs had decreased fractional anisotropy of several important white matter tracts, including the posterior limb of the internal capsule, optic radiations, and corpus callosum (p < 0.05). All three infants with absent fidgety GMs and two with normal GMs went on to be diagnosed with CP. CONCLUSION This study identifies white matter tracts of the brain critical to development of normal fidgety GMs in infants at 3 to 4 months of postterm using advanced MRI techniques. These findings identify those at highest risk for CP among infants with moderate/severe HIE prior to hospital discharge. KEY POINTS · HIE has devastating impacts on families and infants.. · Diffusion MRI identifies infants at highest risk for developing neurodevelopmental impairment.. · Normal general movements of infancy are generated by key white matter tracts..
Collapse
Affiliation(s)
- Christa Tabacaru
- Department of Neonatal-Perinatal Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Adebayo Braimah
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Beth Kline-Fath
- Department of Radiology, Fetal and Neonatal Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Nehal Parikh
- Department of Neonatal-Perinatal Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Stephanie Merhar
- Department of Neonatal-Perinatal Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
3
|
Venkatakrishna SSB, Sharma P, Tierradentro-Garcia LO, Elsingergy M, Worede F, Curic J, Alves CAP, Andronikou S. Frequency of Cerebellar Abnormalities Associated With the Differing Magnetic Resonance Imaging Patterns of Term Hypoxic-Ischemic Injury in Children. Pediatr Neurol 2024; 152:73-78. [PMID: 38232653 DOI: 10.1016/j.pediatrneurol.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/30/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND We aimed to determine the frequency of cerebellar injury using delayed magnetic resonance imaging (MRI) in children with cerebral palsy, diagnosed with term hypoxic-ischemic injury (HII), and to characterize this for the different MRI patterns of HII. METHODS We retrospectively reviewed delayed MRI scans in children with cerebral palsy, of whom 1175 had term HII. The pattern of HII was classified into basal ganglia-thalamus (BGT) pattern, watershed (WS) pattern, combined BGT/WS, and multicystic HII. Cerebellar location (hemisphere versus vermis) and the MRI characteristics were documented overall and for each of the different patterns of HII, as well as the association with thalamic injury. RESULTS Cerebellar injury was found in 252 of 1175 (21.4%) (median age 6 years [interquartile range: 3 to 9 years]). Of these, 49% (124 of 252) were associated with a BGT pattern, 13% (32 of 252) with a WS pattern, 28% (72 of 252) with a combined BGT/WS pattern, and 10% (24 of 252) with a multicystic pattern. The vermis was abnormal in 83% (209 of 252), and the hemispheres were abnormal in 34% (86 of 252) (with 17% [43 of 252] showing both vermis and hemispheric abnormality). CONCLUSIONS Over a fifth of patients with cerebral palsy due to HII had a cerebellar abnormality on delayed MRI, most commonly involving the vermis (83%), and as part of a BGT pattern of injury in just under half of these likely reflecting the association of cerebellar vermis injury with profound insults.
Collapse
Affiliation(s)
| | - Parth Sharma
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Mohamed Elsingergy
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fikadu Worede
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jelena Curic
- Graduate MBA Program, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, Cambridge, UK
| | - Cesar Augusto P Alves
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Savvas Andronikou
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
zur Nedden S, Safari MS, Fresser F, Faserl K, Lindner H, Sarg B, Baier G, Baier-Bitterlich G. PKN1 Exerts Neurodegenerative Effects in an In Vitro Model of Cerebellar Hypoxic-Ischemic Encephalopathy via Inhibition of AKT/GSK3β Signaling. Biomolecules 2023; 13:1599. [PMID: 38002281 PMCID: PMC10669522 DOI: 10.3390/biom13111599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
We recently identified protein kinase N1 (PKN1) as a negative gatekeeper of neuronal AKT protein kinase activity during postnatal cerebellar development. The developing cerebellum is specifically vulnerable to hypoxia-ischemia (HI), as it occurs during hypoxic-ischemic encephalopathy, a condition typically caused by oxygen deprivation during or shortly after birth. In that context, activation of the AKT cell survival pathway has emerged as a promising new target for neuroprotective interventions. Here, we investigated the role of PKN1 in an in vitro model of HI, using postnatal cerebellar granule cells (Cgc) derived from Pkn1 wildtype and Pkn1-/- mice. Pkn1-/- Cgc showed significantly higher AKT phosphorylation, resulting in reduced caspase-3 activation and improved survival after HI. Pkn1-/- Cgc also showed enhanced axonal outgrowth on growth-inhibitory glial scar substrates, further pointing towards a protective phenotype of Pkn1 knockout after HI. The specific PKN1 phosphorylation site S374 was functionally relevant for the enhanced axonal outgrowth and AKT interaction. Additionally, PKN1pS374 shows a steep decrease during cerebellar development. In summary, we demonstrate the pathological relevance of the PKN1-AKT interaction in an in vitro HI model and establish the relevant PKN1 phosphorylation sites, contributing important information towards the development of specific PKN1 inhibitors.
Collapse
Affiliation(s)
- Stephanie zur Nedden
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Motahareh Solina Safari
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Friedrich Fresser
- Institute for Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.F.); (G.B.)
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Herbert Lindner
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Bettina Sarg
- Protein Core Facility, Institute of Medical Biochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.F.); (H.L.); (B.S.)
| | - Gottfried Baier
- Institute for Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria; (F.F.); (G.B.)
| | - Gabriele Baier-Bitterlich
- Institute of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
5
|
Wu CQ, Cowan FM, Jary S, Thoresen M, Chakkarapani E, Spencer APC. Cerebellar growth, volume and diffusivity in children cooled for neonatal encephalopathy without cerebral palsy. Sci Rep 2023; 13:14869. [PMID: 37684324 PMCID: PMC10491605 DOI: 10.1038/s41598-023-41838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Children cooled for HIE and who did not develop cerebral palsy (CP) still underperform at early school age in motor and cognitive domains and have altered supra-tentorial brain volumes and white matter connectivity. We obtained T1-weighted and diffusion-weighted MRI, motor (MABC-2) and cognitive (WISC-IV) scores from children aged 6-8 years who were cooled for HIE secondary to perinatal asphyxia without CP (cases), and controls matched for age, sex, and socioeconomic status. In 35 case children, we measured cerebellar growth from infancy (age 4-15 days after birth) to childhood. In childhood, cerebellar volumes were measured in 26 cases and 23 controls. Diffusion properties (mean diffusivity, MD and fractional anisotropy, FA) were calculated in 24 cases and 19 controls, in 9 cerebellar regions. Cases with FSIQ ≤ 85 had reduced growth of cerebellar width compared to those with FSIQ > 85 (p = 0.0005). Regional cerebellar volumes were smaller in cases compared to controls (p < 0.05); these differences were not significant when normalised to total brain volume. There were no case-control differences in MD or FA. Interposed nucleus volume was more strongly associated with IQ in cases than in controls (p = 0.0196). Other associations with developmental outcome did not differ between cases and controls.
Collapse
Affiliation(s)
- Chelsea Q Wu
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Paediatrics, Imperial College London, London, UK
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Neonatal Intensive Care Unit, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, BS2 8EG, UK.
| | - Arthur P C Spencer
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Perez-Pouchoulen M, Jaiyesimi A, Bardhi K, Waddell J, Banerjee A. Hypothermia increases cold-inducible protein expression and improves cerebellar-dependent learning after hypoxia ischemia in the neonatal rat. Pediatr Res 2023; 94:539-546. [PMID: 36810641 PMCID: PMC10403381 DOI: 10.1038/s41390-023-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy remains a significant cause of developmental disability.1,2 The standard of care for term infants is hypothermia, which has multifactorial effects.3-5 Therapeutic hypothermia upregulates the cold-inducible protein RNA binding motif 3 (RBM3) that is highly expressed in developing and proliferative regions of the brain.6,7 The neuroprotective effects of RBM3 in adults are mediated by its ability to promote the translation of mRNAs such as reticulon 3 (RTN3).8 METHODS: Hypoxia ischemia or control procedure was conducted in Sprague Dawley rat pups on postnatal day 10 (PND10). Pups were immediately assigned to normothermia or hypothermia at the end of the hypoxia. In adulthood, cerebellum-dependent learning was tested using the conditioned eyeblink reflex. The volume of the cerebellum and the magnitude of cerebral injury were measured. A second study quantified RBM3 and RTN3 protein levels in the cerebellum and hippocampus collected during hypothermia. RESULTS Hypothermia reduced cerebral tissue loss and protected cerebellar volume. Hypothermia also improved learning of the conditioned eyeblink response. RBM3 and RTN3 protein expression were increased in the cerebellum and hippocampus of rat pups subjected to hypothermia on PND10. CONCLUSIONS Hypothermia was neuroprotective in male and female pups and reversed subtle changes in the cerebellum after hypoxic ischemic. IMPACT Hypoxic ischemic produced tissue loss and a learning deficit in the cerebellum. Hypothermia reversed both the tissue loss and learning deficit. Hypothermia increased cold-responsive protein expression in the cerebellum and hippocampus. Our results confirm cerebellar volume loss contralateral to the carotid artery ligation and injured cerebral hemisphere, suggesting crossed-cerebellar diaschisis in this model. Understanding the endogenous response to hypothermia might improve adjuvant interventions and expand the clinical utility of this intervention.
Collapse
Affiliation(s)
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Onda K, Chavez-Valdez R, Graham EM, Everett AD, Northington FJ, Oishi K. Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2023; 46:55-68. [PMID: 37231858 PMCID: PMC10712961 DOI: 10.1159/000530938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 05/27/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Graham
- Department of Gynecology & Obstetrics, Division of Maternal-Fetal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Cao Z, Lin H, Gao F, Shen X, Zhang H, Zhang J, Du L, Lai C, Ma X, Wu D. Microstructural Alterations in Projection and Association Fibers in Neonatal Hypoxia-Ischemia. J Magn Reson Imaging 2023; 57:1131-1142. [PMID: 35861468 DOI: 10.1002/jmri.28366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Diffusion MRI (dMRI) is known to be sensitive to hypoxic-ischemic encephalopathy (HIE). However, existing dMRI studies used simple diffusion tensor metrics and focused only on a few selected cerebral regions, which cannot provide a comprehensive picture of microstructural injury. PURPOSE To systematically characterize the microstructural alterations in mild, moderate, and severe HIE neonates compared to healthy neonates with advanced dMRI using region of interest (ROI), tract, and fixel-based analyses. STUDY TYPE Prospective. POPULATION A total of 42 neonates (24 males and 18 females). FIELD STRENGTH/SEQUENCE 3-T, diffusion-weighted echo-planar imaging. ASSESSMENT Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC) were calculated in 40 ROIs and 6 tracts. Fixel-based analysis was performed to assess group differences in individual fiber components within a voxel (fixel). STATISTICAL TESTS One-way analysis of covariance (ANCOVA) to compare dMRI metrics among severe/moderate/mild HIE and control groups and general linear model for fixel-wise group differences (age, sex, and body weight as covariates). Adjusted P value < 0.05 was considered statistically significant. RESULTS For severe HIE, ROI-based analysis revealed widespread regions, including the deep nuclei and white matter with reduced FA, while in moderate injury, only FC was decreased around the posterior watershed zones. Tract-based analysis demonstrated significantly reduced FA, FD, and FC in the right inferior fronto-occipital fasciculus (IFOF), right inferior longitudinal fasciculus (ILF), and splenium of corpus callosum (SCC) in moderate HIE, and in right IFOF and left anterior thalamic radiation (ATR) in mild HIE. Correspondingly, we found altered fixels in the right middle-posterior IFOF and ILF, and in the central-to-right part of SCC in moderate HIE. DATA CONCLUSION For severe HIE, extensive microstructural injury was identified. For moderate-mild HIE, association fiber injury in posterior watershed area with a rightward lateralization was found. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Zuozhen Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Huijia Lin
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoxia Shen
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangyang Zhang
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Lizhong Du
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Can Lai
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaolu Ma
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr Res 2022; 92:1325-1331. [PMID: 35152267 PMCID: PMC9372221 DOI: 10.1038/s41390-022-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a devastating disease with lifelong disabilities. Hypothermia is currently the only treatment. At term, the neonatal cerebellum may be particularly vulnerable to the effects of HIE. At this time, many developmental processes depend on lipid raft function. These microdomains of the plasma membrane are critical for cellular signaling and axon extension. We hypothesized that HIE alters the protein content of lipid rafts in the cerebellum. METHODS Postnatal day (PN) 10 animals, considered human term equivalent, underwent hypoxic-ischemic (HI) injury by a right carotid artery ligation followed by hypoxia. For some animals, LPS was administered on PN7, and hypothermia (HT) was conducted for 4 h post-hypoxia. Lipid rafts were isolated from the right and left cerebella. The percent of total L1 cell adhesion molecule in lipid rafts was determined 4 and 72 h after hypoxia. RESULTS No sex differences were found. HI alone caused significant increases in the percent of L1 in lipid rafts which persisted until 72 h in the right but not the left cerebellum. A small but significant effect of LPS was detected in the left cerebellum 72 h after HI. Hypothermia had no effect. CONCLUSIONS Lipid rafts may be a new target for interventions of HIE. IMPACT This article investigates the effect of neonatal exposure to hypoxic-ischemic encephalopathy (HIE) on the distribution of membrane proteins in the cerebellum. This article explores the effectiveness of hypothermia as a prevention for the harmful effects of HIE on membrane protein distribution. This article shows an area of potential detriment secondary to HIE that persists with current treatments, and explores ideas for new treatments.
Collapse
|
10
|
Bobba PS, Weber CF, Mak A, Mozayan A, Malhotra A, Sheth KN, Taylor SN, Vossough A, Grant PE, Scheinost D, Constable RT, Ment LR, Payabvash S. Age-related topographic map of magnetic resonance diffusion metrics in neonatal brains. Hum Brain Mapp 2022; 43:4326-4334. [PMID: 35599634 PMCID: PMC9435001 DOI: 10.1002/hbm.25956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 01/15/2023] Open
Abstract
Accelerated maturation of brain parenchyma close to term-equivalent age leads to rapid changes in diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) metrics of neonatal brains, which can complicate the evaluation and interpretation of these scans. In this study, we characterized the topography of age-related evolution of diffusion metrics in neonatal brains. We included 565 neonates who had MRI between 0 and 3 months of age, with no structural or signal abnormality-including 162 who had DTI scans. We analyzed the age-related changes of apparent diffusion coefficient (ADC) values throughout brain and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) along white matter (WM) tracts. Rate of change in ADC, FA, and MD values across 5 mm cubic voxels was calculated. There was significant reduction of ADC and MD values and increase of FA with increasing gestational age (GA) throughout neonates' brain, with the highest temporal rates in subcortical WM, corticospinal tract, cerebellar WM, and vermis. GA at birth had significant effect on ADC values in convexity cortex and corpus callosum as well as FA/MD values in corpus callosum, after correcting for GA at scan. We developed online interactive atlases depicting age-specific normative values of ADC (ages 34-46 weeks), and FA/MD (35-41 weeks). Our results show a rapid decrease in diffusivity metrics of cerebral/cerebellar WM and vermis in the first few weeks of neonatal age, likely attributable to myelination. In addition, prematurity and low GA at birth may result in lasting delay in corpus callosum myelination and cerebral cortex cellularity.
Collapse
Affiliation(s)
- Pratheek S. Bobba
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Clara F. Weber
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
- Social Neuroscience Lab, Department of Psychiatry and PsychotherapyLübeck UniversityLübeckGermany
| | - Adrian Mak
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
- CLAIM ‐ Charité Lab for Artificial Intelligence in MedicineCharité Universitätsmedizin BerlinBerlinGermany
| | - Ali Mozayan
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Ajay Malhotra
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Kevin N. Sheth
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
| | - Sarah N. Taylor
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Arastoo Vossough
- Department of RadiologyChildren's Hospital of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Patricia Ellen Grant
- Division of Newborn Medicine, Department of MedicineBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Robert Todd Constable
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| | - Laura R. Ment
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
11
|
Onda K, Catenaccio E, Chotiyanonta J, Chavez-Valdez R, Meoded A, Soares BP, Tekes A, Spahic H, Miller SC, Parker SJ, Parkinson C, Vaidya DM, Graham EM, Stafstrom CE, Everett AD, Northington FJ, Oishi K. Development of a composite diffusion tensor imaging score correlating with short-term neurological status in neonatal hypoxic-ischemic encephalopathy. Front Neurosci 2022; 16:931360. [PMID: 35983227 PMCID: PMC9379310 DOI: 10.3389/fnins.2022.931360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal acquired brain injury. Although conventional MRI may predict neurodevelopmental outcomes, accurate prognostication remains difficult. As diffusion tensor imaging (DTI) may provide an additional diagnostic and prognostic value over conventional MRI, we aimed to develop a composite DTI (cDTI) score to relate to short-term neurological function. Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE were evaluated with DTI, with a voxel size of 1 × 1 × 2 mm. Fractional anisotropy (FA) and mean diffusivity (MD) from 100 neuroanatomical regions (FA/MD *100 = 200 DTI parameters in total) were quantified using an atlas-based image parcellation technique. A least absolute shrinkage and selection operator (LASSO) regression was applied to the DTI parameters to generate the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score] was used as a measure of short-term neurological function and was correlated with extracted DTI features. Seventeen DTI parameters were selected with LASSO and built into the final unbiased regression model. The selected factors included FA or MD values of the limbic structures, the corticospinal tract, and the frontotemporal cortices. While the cDTI score strongly correlated with the STO score (rho = 0.83, p = 2.8 × 10-16), it only weakly correlated with the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-NRN neuroimaging score (rho = 0.43, p = 6.6 × 10-04). In contrast to the cDTI score, the NICHD-NRN score only moderately correlated with the STO score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10 at admission to the NICU (p = 1.5 × 10-13) and tau protein at the end of TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly associated with higher cDTI scores, suggesting that high cDTI scores were related to the intensity of the early inflammatory response and the severity of neuronal impairment after TH. In conclusion, a data-driven unbiased approach was applied to identify anatomical structures associated with some aspects of neurological function of HIE neonates after cooling and to build a cDTI score, which was correlated with the severity of short-term neurological functions.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eva Catenaccio
- Division of Pediatric Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Bruno P. Soares
- Division of Neuroradiology, Department of Radiology, Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Aylin Tekes
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harisa Spahic
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah C. Miller
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Charlamaine Parkinson
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dhananjay M. Vaidya
- Department of General Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carl E. Stafstrom
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Parmentier CEJ, de Vries LS, Groenendaal F. Magnetic Resonance Imaging in (Near-)Term Infants with Hypoxic-Ischemic Encephalopathy. Diagnostics (Basel) 2022; 12:diagnostics12030645. [PMID: 35328199 PMCID: PMC8947468 DOI: 10.3390/diagnostics12030645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/14/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neurological sequelae in (near-)term newborns. Despite the use of therapeutic hypothermia, a significant number of newborns still experience impaired neurodevelopment. Neuroimaging is the standard of care in infants with HIE to determine the timing and nature of the injury, guide further treatment decisions, and predict neurodevelopmental outcomes. Cranial ultrasonography is a helpful noninvasive tool to assess the brain before initiation of hypothermia to look for abnormalities suggestive of HIE mimics or antenatal onset of injury. Magnetic resonance imaging (MRI) which includes diffusion-weighted imaging has, however, become the gold standard to assess brain injury in infants with HIE, and has an excellent prognostic utility. Magnetic resonance spectroscopy provides complementary metabolic information and has also been shown to be a reliable prognostic biomarker. Advanced imaging modalities, including diffusion tensor imaging and arterial spin labeling, are increasingly being used to gain further information about the etiology and prognosis of brain injury. Over the past decades, tremendous progress has been made in the field of neonatal neuroimaging. In this review, the main brain injury patterns of infants with HIE, the application of conventional and advanced MRI techniques in these newborns, and HIE mimics, will be described.
Collapse
Affiliation(s)
- Corline E. J. Parmentier
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
- Department of Neonatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
- Correspondence:
| |
Collapse
|
13
|
Hwang M, Barnewolt CE, Jüngert J, Prada F, Sridharan A, Didier RA. Contrast-enhanced ultrasound of the pediatric brain. Pediatr Radiol 2021; 51:2270-2283. [PMID: 33599780 PMCID: PMC11458139 DOI: 10.1007/s00247-021-04974-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
Brain contrast-enhanced ultrasound (CEUS) is an emerging application that can complement gray-scale US and yield additional insights into cerebral flow dynamics. CEUS uses intravenous injection of ultrasound contrast agents (UCAs) to highlight tissue perfusion and thus more clearly delineate cerebral pathologies including stroke, hypoxic-ischemic injury and focal lesions such as tumors and vascular malformations. It can be applied not only in infants with open fontanelles but also in older children and adults via a transtemporal window or surgically created acoustic window. Advancements in CEUS technology and post-processing methods for quantitative analysis of UCA kinetics further elucidate cerebral microcirculation. In this review article we discuss the CEUS examination protocol for brain imaging in children, current clinical applications and future directions for research and clinical uses of brain CEUS.
Collapse
Affiliation(s)
- Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carol E Barnewolt
- Department of Radiology, Boston Children's Hospital, Harvard University, Boston, MA, USA
| | - Jörg Jüngert
- Department of Pediatrics, Friedrich-Alexander University Erlangen - Nürnberg, Erlangen, Germany
| | - Francesco Prada
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Anush Sridharan
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ryne A Didier
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Wisnowski JL, Wintermark P, Bonifacio SL, Smyser CD, Barkovich AJ, Edwards AD, de Vries LS, Inder TE, Chau V. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101304. [PMID: 34736808 PMCID: PMC9135955 DOI: 10.1016/j.siny.2021.101304] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neuroimaging is widely used to aid in the diagnosis and clinical management of neonates with neonatal encephalopathy (NE). Yet, despite widespread use clinically, there are few published guidelines on neuroimaging for neonates with NE. This review outlines the primary patterns of brain injury associated with hypoxic-ischemic injury in neonates with NE and their frequency, associated neuropathological features, and risk factors. In addition, it provides an overview of neuroimaging methods, including the most widely used scoring systems used to characterize brain injury in these neonates and their utility as predictive biomarkers. Last, recommendations for neuroimaging in neonates with NE are presented.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Departments of Radiology and Pediatrics (Neonatology), Children's Hospital Los Angeles, 4650 Sunset Blvd. MS #81, Los Angeles CA 90027, USA.
| | - Pia Wintermark
- Department of Pediatrics (Neonatology), McGill University/Montreal Children's Hospital, Division of Newborn Medicine, Research Institute of the McGill University Health Centre, 1001 boul. Décarie, Site Glen Block E, EM0.3244, Montréal, QC H4A 3J1, Canada.
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics (Neonatology), Lucile Packard Children's Hospital, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA 94304, USA.
| | - Christopher D Smyser
- Departments of Neurology, Radiology, and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110-1093, USA.
| | - A James Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, University of California San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - A David Edwards
- Evelina London Children's Hospital, Centre for Developing Brain, King's College London, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Vann Chau
- Department of Pediatrics (Neurology), The Hospital for Sick Children, University of Toronto, 555 University Avenue, Room 6513, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
15
|
Kushwah S, Kumar A, Verma A, Basu S, Kumar A. Comparison of fractional anisotropy and apparent diffusion coefficient among hypoxic ischemic encephalopathy stages 1, 2, and 3 and with nonasphyxiated newborns in 18 areas of brain. Indian J Radiol Imaging 2021; 27:447-456. [PMID: 29379241 PMCID: PMC5761173 DOI: 10.4103/ijri.ijri_384_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose To determine the area and extent of injury in hypoxic encephalopathy stages by diffusion tensor imaging (DTI) using parameters apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values and their comparison with controls without any evidence of asphyxia. To correlate the outcome of hypoxia severity clinically and significant changes on DTI parameter. Materials and Methods DTI was done in 50 cases at median age of 12 and 20 controls at median age of 7 days. FA and apparent diffusion coefficient (ADC) were measured in several regions of interest (ROI). Continuous variables were analyzed using Student's t-test. Categorical variables were compared by Fisher's exact test. Comparison among multiple groups was done using analysis of variance (ANOVA) and post hoc Bonferroni test. Results Abnormalities were more easily and accurately determined in ROI with the help of FA and ADC values. When compared with controls FA values were significantly decreased and ADC values were significantly increased in cases, in ROI including both right and left side of thalamus, basal ganglia, posterior limb of internal capsule, cerebral peduncle, corticospinal tracts, frontal, parietal, temporal, occipital with P value < 0.05. The extent of injury was maximum in stage-III. There was no significant difference among males and females. Conclusion Compared to conventional magnetic resonance imaging (MRI), the evaluation of FA and ADC values using DTI can determine the extent and severity of injury in hypoxic encephalopathy. It can be used for early determination of brain injury in these patients.
Collapse
Affiliation(s)
- Supriya Kushwah
- Department of Paediatrics, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Ashok Kumar
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Sriparna Basu
- Department of Paediatrics, Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | - Ashutosh Kumar
- Department of Anaesthesia, KMC, Mangalore, Karnataka, India
| |
Collapse
|
16
|
Thermal Index for early non-invasive assessment of brain injury in newborns treated with therapeutic hypothermia: preliminary report. Sci Rep 2021; 11:12578. [PMID: 34131269 PMCID: PMC8206354 DOI: 10.1038/s41598-021-92139-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022] Open
Abstract
Perinatal asphyxia (PA) is the 3rd most common cause of neonatal death and one of the most common causes of severe neurological impairments in children. Current tools and measurements mainly based on the analysis of clinical evaluation and laboratory and electrophysiological tests do not give consistent data allowing to predict the severity of hypoxic-ischemic encephalopathy (HIE) until a magnetic resonance imaging (MRI) score is performed. The aim of this work is to evaluate the usefulness of the new index, called Thermal Index (TI) in the assessment of the degree of brain damage in newborns in the course of therapeutic hypothermia (TH) due to PA. This was a prospective, observational, pilot study which did not require any changes in the applicable procedures. Analysis has been applied to six newborn babies treated with TH in Neonatal/Paediatric ICU in University Hospital in Opole in 2018 due to PA. They all met criteria for TH according to the current recommendations. Brain MRI was performed after the end of TH when the children were brought back to normal temperature, with the use of a 1.5 T scanner, using T1-, T2-weighted images, fluid-attenuated inversion recovery (FLAIR), inversion recovery (IR), susceptibility-weighted imaging (SWI), and diffusion-weighted imaging (DWI). The images were assessed using MRI score according to the scoring system proposed by Weeke et al. The Thermal Index assessing endogenous heat production was calculated according to the formula proposed in this paper. A high, statistically significant positive correlation was found between MRI scores and TI values (0.98; p = 0.0003) in the 1st hour of therapy. High correlation with MRI assessment, the non-invasiveness of measurements and the availability of results within the first few hours of treatment, allow authors to propose the Thermal Index as a tool for early evaluating of the brain injury in newborns treated with TH. Further research is required to confirm the usefulness of the proposed method.
Collapse
|
17
|
Annink KV, Meerts L, van der Aa NE, Alderliesten T, Nikkels PGJ, Nijboer CHA, Groenendaal F, de Vries LS, Benders MJNL, Hoebeek FE, Dudink J. Cerebellar injury in term neonates with hypoxic-ischemic encephalopathy is underestimated. Pediatr Res 2021; 89:1171-1178. [PMID: 32967002 DOI: 10.1038/s41390-020-01173-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Postmortem examinations frequently show cerebellar injury in infants with severe hypoxic-ischemic encephalopathy (HIE), while it is less well visible on MRI. The primary aim was to investigate the correlation between cerebellar apparent diffusion coefficient (ADC) values and histopathology in infants with HIE. The secondary aim was to compare ADC values in the cerebellum of infants with HIE and infants without brain injury. METHODS ADC values in the cerebellar vermis, hemispheres and dentate nucleus (DN) of (near-)term infants with HIE (n = 33) within the first week after birth were compared with neonates with congenital non-cardiac anomalies, normal postoperative MRIs and normal outcome (n = 22). Microglia/macrophage activation was assessed using CD68 and/or HLA-DR staining and Purkinje cell (PC) injury using H&E-stained slices. The correlation between ADC values and the histopathological measures was analyzed. RESULTS ADC values in the vermis (p = 0.021) and DN (p < 0.001) were significantly lower in infants with HIE compared to controls. ADC values in the cerebellar hemispheres were comparable. ADC values in the vermis were correlated with the number and percentage of normal PCs; otherwise ADC values and histology were not correlated. CONCLUSION Histopathological injury in the cerebellum is common in infants with HIE. ADC values underestimate histopathological injury. IMPACT ADC values might underestimate cerebellar injury in neonates with HIE. ADC values in the vermis and dentate nucleus of infants with HIE are lower compared to controls, but not in the cerebellar hemispheres. Abnormal ADC values are only found when cytotoxic edema is very severe. ADC values in the vermis are correlated with Purkinje cell injury in the vermis; furthermore, there were no correlations between ADC values and histopathological measures.
Collapse
Affiliation(s)
- Kim V Annink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Lilly Meerts
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands.,Department of Developmental Origins of Disease, University Medical Center Utrecht Brain Centre, University Utrecht, Utrecht, The Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Peter G J Nikkels
- Department of Pathology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Cora H A Nijboer
- Department of Developmental Origins of Disease, University Medical Center Utrecht Brain Centre, University Utrecht, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Freek E Hoebeek
- Department of Developmental Origins of Disease, University Medical Center Utrecht Brain Centre, University Utrecht, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Xiao J, He X, Tian J, Chen H, Liu J, Yang C. Diffusion kurtosis imaging and pathological comparison of early hypoxic-ischemic brain damage in newborn piglets. Sci Rep 2020; 10:17242. [PMID: 33057162 PMCID: PMC7560608 DOI: 10.1038/s41598-020-74387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Abstract
To investigate the application value of magnetic resonance diffusion kurtosis imaging (DKI) in hypoxic–ischemic brain damage (HIBD) in newborn piglets and to compare imaging and pathological results. Of 36 piglets investigated, 18 were in the experimental group and 18 in the control group. The HIBD model was established in newborn piglets by ligating the bilateral common carotid arteries and placing them into hypoxic chamber. All piglets underwent conventional MRI and DKI scans at 3, 6, 9, 12, 16, and 24 h postoperatively. Mean kurtosis (MK) and mean diffusivity (MD) maps were constructed. Then, the lesions were examined using light and electron microscopy and compared with DKI images. The MD value of the lesion area gradually decreased and the MK value gradually increased in the experimental group with time. The lesion areas gradually expanded with time; MK lesions were smaller than MD lesions. Light microscopy revealed neuronal swelling in the MK- and MD-matched and mismatched regions. Electron microscopy demonstrated obvious mitochondrial swelling and autophagosomes in the MK- and MD-matched region but normal mitochondrial morphology or mild swelling in the mismatched region. DKI can accurately evaluate early ischemic–hypoxic brain injury in newborn piglets.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Xiaoning He
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Juan Tian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Honghai Chen
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Jing Liu
- Dalian Medical University, No. 9, West Section, South Lvshun Road, Dalian, Liaoning, China
| | - Chao Yang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China.
| |
Collapse
|
19
|
Dibble M, O'Dea MI, Hurley T, Byrne A, Colleran G, Molloy EJ, Bokde ALW. Diffusion tensor imaging in neonatal encephalopathy: a systematic review. Arch Dis Child Fetal Neonatal Ed 2020; 105:480-488. [PMID: 31822482 DOI: 10.1136/archdischild-2019-318025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Diffusion tensor imaging (DTI) during the first few days of life can be used to assess brain injury in neonates with neonatal encephalopathy (NE) for outcome prediction. The goal of this review was to identify specific white matter tracts of interest that can be quantified by DTI as being altered in neonates with this condition, and to investigate its potential prognostic ability. METHODS Searches of Medline and the Cochrane Database of Systematic Reviews were conducted to identify studies with diffusion data collected in term-born neonates with NE. RESULTS 19 studies were included which described restricted diffusion in encephalopathic neonates as compared with healthy controls, with the posterior limb of the internal capsule and the genu and splenium of the corpus callosum identified as particular regions of interest. Restricted diffusion was related to adverse outcomes in the studies that conducted a follow-up of these infants. CONCLUSIONS Obtaining diffusion measures in these key white matter tracts early in life before pseudonormalisation can occur can not only identify the extent of the damage but also can be used to examine the effectiveness of treatment and to predict neurodevelopmental outcome.
Collapse
Affiliation(s)
- Megan Dibble
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland .,Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Mary Isabel O'Dea
- Paediatrics and Child Health, Trinity College Dublin, Dublin, Ireland
| | - Tim Hurley
- Paediatrics and Child Health, Trinity College Dublin, Dublin, Ireland
| | - Angela Byrne
- Department of Radiology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Gabrielle Colleran
- Department of Radiology, The National Maternity Hospital, Dublin, Ireland
| | - Eleanor J Molloy
- Paediatrics and Child Health, Trinity College Dublin, Dublin, Ireland.,Department of Neonatology, Children's Hospital Ireland at Crumlin and Tallaght, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Arun Lawrence Warren Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Carrasco M, Stafstrom CE, Tekes A, Parkinson C, Northington FJ. The Johns Hopkins Neurosciences Intensive Care Nursery Tenth Anniversary (2009-2019): A Historical Reflection and Vision for the Future. Child Neurol Open 2020; 7:2329048X20907761. [PMID: 32215280 PMCID: PMC7081468 DOI: 10.1177/2329048x20907761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/16/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Since 2009, the Neurosciences Intensive Care Nursery at Johns Hopkins Children’s Center has provided a multidisciplinary approach toward the care of newborns with neurological disorders. The program’s cornerstone is an interdisciplinary approach that involves the primary neonatology team plus experts from more than 10 specialties who convene at a weekly team conference at which newborns with neurological problems are discussed in detail. This interdisciplinary approach fosters in-depth discussion of clinical issues to optimize the management of neonates with neurological problems as well as the opportunity to generate research ideas and provide education about neonatal neuroscience at all levels (faculty, nurses, and trainees). The purpose of this article is to provide a 10-year reflection of our Neurosciences Intensive Care Nursery with a view toward expanding efforts in the 3 areas of our mission: clinical care, research, and education. We hope that our experience will enhance the spread of neonatal neuroscience education, care, and research as widely as possible.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Charla Parkinson
- Division of Neonatology, Department of Pediatrics, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Salas J, Reddy N, Carson KA, Northington FJ, Huisman TA. Ultrasound Predicts White Matter Integrity after Hypothermia Therapy in Neonatal Hypoxic-Ischemic Injury. J Neuroimaging 2019; 29:743-749. [PMID: 31206969 PMCID: PMC6814495 DOI: 10.1111/jon.12644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic injury (HII) is a major cause of neonatal death and neurodevelopmental disability. Head ultrasounds (HUS) in neonates with HII often show enhanced gray/white matter differentiation. We assessed the significance of this finding in predicting white matter structural integrity measured by diffusion tensor imaging (DTI) in neonates with HII. METHODS We performed a quantitative region of interest-based analysis of white and gray matter echogenicity within the cingulate gyrus on pre- and posthypothermia HUS. We also completed a quantitative analysis of fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity within the bilateral anterior and posterior centrum semiovale (CSO) on posthypothermia brain magnetic resonance imaging. For HUS studies, we calculated a white-to-gray matter echogenicity ratio (WGR) and subsequently correlated it to DTI measurements. RESULTS Forty-two term neonates with HII who underwent hypothermia therapy were included. Significant correlation was found between prehypothermia WGR and MD, AD, and RD values in the left anterior CSO (r = .38-.40, P = .02). Prehypothermia WGR also correlated with the following: MD and RD in the right anterior CSO (r = .35-.36, P = .04), MD and AD in the right posterior CSO (r = .32-.45, P = .008-.03), and AD in the left posterior CSO (r = .47, P = .005). No significant correlation was found either between prehypothermia WGR and FA values in the bilateral anterior and posterior CSO or between posthypothermia WGR and all DTI scalars in the bilateral anterior and posterior CSO. CONCLUSIONS Prehypothermia HUS WGR may predict posthypothermia white matter structural integrity and is potentially an early and easily obtainable biomarker of severity in neonatal HII.
Collapse
Affiliation(s)
- Jacqueline Salas
- Division of Neonatology, Department of Pediatrics, New-York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA,Neurosciences Intensive Care Nursery Group and Division of Neonatology, Johns Hopkins University School of Medicine
| | - Nihaal Reddy
- Neurosciences Intensive Care Nursery Group and Division of Neonatology, Johns Hopkins University School of Medicine,Division of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn A. Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frances J. Northington
- Neurosciences Intensive Care Nursery Group and Division of Neonatology, Johns Hopkins University School of Medicine,Division of Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine
| | - Thierry A.G.M. Huisman
- Neurosciences Intensive Care Nursery Group and Division of Neonatology, Johns Hopkins University School of Medicine,Division of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Chen S, Liu X, Mei Y, Li C, Ren D, Zhong M, Xu Y. Early identification of neonatal mild hypoxic-ischemic encephalopathy by amide proton transfer magnetic resonance imaging: A pilot study. Eur J Radiol 2019; 119:108620. [PMID: 31422164 DOI: 10.1016/j.ejrad.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to evaluate the amide proton transfer (APT) values in neonates with mild hypoxic-ischemic encephalopathy (HIE) using APT imaging. METHOD A total of 30 full-term neonates with mild HIE (16 males and 14 females; mean postnatal age 4.2 days, age range 2-7 days) and 12 normal neonates (six males and six females; mean postnatal age 3.3 days, age range 2-5 days) underwent conventional magnetic resonance imaging and APT imaging. APT measurements were performed in multiple regions of interest (ROIs) in the brain. APT values were statistically analyzed to assess for significant differences between the mild HIE and normal neonates in different regions of the brain, and correlation with neonatal gestational age. RESULTS In 30 neonates with mild HIE, 10% (3/30) of the HIE patients had normal conventional MRI. There were significant differences in APT values of the HIE group in bilateral caudate, bilateral thalamus, bilateral centrum semiovale and left globus pallidus/putamen (p < 0.05), and no statistical difference was observed in right globus pallidus/putamen (p = 0.051) and brainstem (p = 0.073) between the two groups. Furthermore, APT values in bilateral caudate, bilateral globus pallidus/putamen, bilateral thalamus, and brainstem regions (p < 0.05) exhibited positive linear correlations with gestational age in the control group, except for bilateral centrum semiovale (right: Pearson's r = 0.554, p = 0.062; left: Pearson's r = 0.561, p = 0.058). In the mild HIE groups, no significant correlation with gestational age was found in all regions. CONCLUSIONS APT imaging is a feasible and useful technique with diagnostic capability for neonatal HIE.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou 510515, China
| | - Xilong Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingjie Mei
- Philips Healthcare, Guangzhou, Guangdong 510055, China
| | - Caixia Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Daokun Ren
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
23
|
Barkovich MJ, Li Y, Desikan RS, Barkovich AJ, Xu D. Challenges in pediatric neuroimaging. Neuroimage 2019; 185:793-801. [PMID: 29684645 PMCID: PMC6197938 DOI: 10.1016/j.neuroimage.2018.04.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/04/2023] Open
Abstract
Pediatric neuroimaging is challenging due the rapid structural, metabolic, and functional changes that occur in the developing brain. A specially trained team is needed to produce high quality diagnostic images in children, due to their small physical size and immaturity. Patient motion, cooperation and medical condition dictate the methods and equipment used. A customized approach tailored to each child's age and functional status with the appropriate combination of dedicated staff, imaging hardware, and software is key; these range from low-tech techniques, such as feed and swaddle, to specialized small bore MRI scanners, MRI compatible incubators and neonatal head coils. New pre-and post-processing techniques can also compensate for the motion artifacts and low signal that often degrade neonatal scans.
Collapse
Affiliation(s)
- Matthew J Barkovich
- Department of Radiology and Diagnostic Imaging, University of California, San Francisco 505 Parnassus Avenue, Room L352, San Francisco, CA 94143-0628, United States.
| | - Yi Li
- Department of Radiology and Diagnostic Imaging, University of California, San Francisco 505 Parnassus Avenue, Room L352, San Francisco, CA 94143-0628, United States
| | - Rahul S Desikan
- Department of Radiology and Diagnostic Imaging, University of California, San Francisco 505 Parnassus Avenue, Room L352, San Francisco, CA 94143-0628, United States
| | - A James Barkovich
- Department of Radiology and Diagnostic Imaging, University of California, San Francisco 505 Parnassus Avenue, Room L352, San Francisco, CA 94143-0628, United States; UCSF-Benioff Children's Hospital, 1975 4th St, San Francisco, CA 94158, United States
| | - Duan Xu
- Department of Radiology and Diagnostic Imaging, University of California, San Francisco 505 Parnassus Avenue, Room L352, San Francisco, CA 94143-0628, United States; UCSF-Benioff Children's Hospital, 1975 4th St, San Francisco, CA 94158, United States
| |
Collapse
|
24
|
Commentary on "The long-term effect of perinatal asphyxia on hippocampal volumes". Pediatr Res 2019; 85:9-10. [PMID: 30349073 DOI: 10.1038/s41390-018-0209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022]
|
25
|
Li HX, Yu M, Zheng AB, Zhang QF, Hua GW, Tu WJ, Zhang LC. Resting-state network complexity and magnitude changes in neonates with severe hypoxic ischemic encephalopathy. Neural Regen Res 2019; 14:642-648. [PMID: 30632504 PMCID: PMC6352595 DOI: 10.4103/1673-5374.247468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 term-born infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children’s Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children’s Hospital (approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR1800016409) and the protocol version is 1.0.
Collapse
Affiliation(s)
- Hong-Xin Li
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Min Yu
- Graduate Student, Nantong University, Nantong, Jiangsu Province, China
| | - Ai-Bin Zheng
- Department of Children's Health Research Center, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Qin-Fen Zhang
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Guo-Wei Hua
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Wen-Juan Tu
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Li-Chi Zhang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Kozana A, Boursianis T, Kalaitzakis G, Raissaki M, Maris TG. Neonatal brain: Fabrication of a tissue-mimicking phantom and optimization of clinical Τ1w and T2w MRI sequences at 1.5 T. Phys Med 2018; 55:88-97. [PMID: 30471825 DOI: 10.1016/j.ejmp.2018.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/06/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Tο fabricate a tissue-mimicking phantom simulating the MR relaxation times of neonatal gray and white matter at 1.5 T, for the optimization of clinical Τ1 weighted (T1w) and T2 weighted (T2w) sequences. METHODS Numerous agarose gel solutions, doped with paramagnetic Gadopentetic acid (Gd-DTPA) ions, underwent quantitative relaxometry with a Turbo-Inversion-Recovery Spin-Echo (TIRSE) sequence and a Car-Purcell-Meiboom-Gill (CPMG) sequence for T1 and T2 measurements, respectively. Twenty samples which simulated the spectrum of relaxation times of neonatal brain parenchyma were selected. Reproducibility was tested by refabrication and relaxometry of the relevant samples while stability was tested by six sets of quantitative relaxometry scans during a 12-month period. RESULTS "Neonatal gray matter equivalent"(0.6%w/v agarose-0.10 mM Gd-DTPA), accurately mimicked relaxation times of neonatal gray matter: T1 = (1134 ± 7)ms, T2 = (200 ± 7)ms. "Neonatal white matter equivalent"(0.3%w/v agarose-0.03 mM Gd-DTPA), accurately mimicked relaxation times of neonatal white matter: T1 = (1654 ± 9)ms, T2 = (376 ± 4)ms. Coefficient of variation of T1 and T2 relaxation times measurements remained less than 5% during 12 months. Sequences were modified according to maximum relative contrast (RC) between neonatal gray and white matter equivalents. Optimized T2wTSE and T1wTSE parameters were TR/TE = 9500 ms/280 ms and TR/TE = 1200 ms/10 ms, respectively for a MAGNETOM Vision/Sonata Hybrid 1.5 T system. Quantitative relaxometry at different 1.5 T MR systems resulted in inter-system T1, T2 measurement deviations of 12% and 3%, respectively. CONCLUSION A precise, stable and reproducible phantom for the neonatal brain was fabricated. Subsequent optimization of clinical T1w and T2w sequences based on maximum RC between neonatal gray and white matter equivalents was scientifically supported with robust relaxometry. The procedure was applicable in different 1.5 T systems. HIGHLIGHT TR & TE optimization of neonatal brain at 1.5 T was based on relaxometry of a stable, reproducible phantom.
Collapse
Affiliation(s)
- Androniki Kozana
- Radiology Department, University Hospital of Heraklion, GR71110, Voutes, Heraklion, Crete, Greece; Department of Medical Physics, Medical School, University of Crete, GR 71201, Voutes, Heraklion, Crete, Greece
| | - Themis Boursianis
- Department of Medical Physics, Medical School, University of Crete, GR 71201, Voutes, Heraklion, Crete, Greece
| | - George Kalaitzakis
- Department of Medical Physics, Medical School, University of Crete, GR 71201, Voutes, Heraklion, Crete, Greece
| | - Maria Raissaki
- Radiology Department, University Hospital of Heraklion, GR71110, Voutes, Heraklion, Crete, Greece
| | - Thomas G Maris
- Radiology Department, University Hospital of Heraklion, GR71110, Voutes, Heraklion, Crete, Greece; Department of Medical Physics, Medical School, University of Crete, GR 71201, Voutes, Heraklion, Crete, Greece.
| |
Collapse
|
27
|
Salas J, Reddy N, Orru E, Carson KA, Chavez-Valdez R, Burton VJ, Stafstrom CE, Northington FJ, Huisman TAGM. The Role of Diffusion Tensor Imaging in Detecting Hippocampal Injury Following Neonatal Hypoxic-Ischemic Encephalopathy. J Neuroimaging 2018; 29:252-259. [PMID: 30325083 DOI: 10.1111/jon.12572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Neonatal hypoxic-ischemic injury of the brain and resultant encephalopathy (HIE) leads to major developmental impairments by school age. Conventional/anatomical MRI often fails to detect hippocampal injury in mild cases. We hypothesize that diffusion tensor imaging (DTI) has greater sensitivity for identifying subtle hippocampal injury. METHODS We retrospectively analyzed DTI data collected from a cohort of neonates with HIE and controls. Conventional MRI sequences were classified qualitatively according to severity using a modified Barkovich scale. Using multivariate linear regression, we compared hippocampal DTI scalars of HIE patients and controls. Spearman correlation was used to test the association of DTI scalars in the hippocampal and thalamic regions. A multiple regression analysis tested the association of the DTI scalars with short-term outcomes. RESULTS Fifty-five neonates with HIE (42% males) and 13 controls (54% males) were included. Hippocampal DTI scalars were similar between HIE and control groups, even when restricting the HIE group to those with moderate-to-severe injury (8 subjects). DTI scalars of the thalamus were significantly lower in the moderate-to-severely affected patients compared to controls (right fractional anisotropy [FA] .148 vs. .182, P = .01; left FA .147 vs. .181, P = .03). Hippocampal and thalamic DTI scalars were correlated (P < .001). Hippocampal DTI scalars were not associated with short-term outcomes. CONCLUSIONS Quantitative DTI analysis of the hippocampus in neonates following HIE is a feasible technique to examine neuronal injury. Although DTI scalars were useful in identifying thalamic injury in our cohort, hippocampal DTI analysis did not provide additional information regarding hippocampal injury following HIE.
Collapse
Affiliation(s)
- Jacqueline Salas
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, The Charlotte R. Bloomberg Children's Center, Baltimore, MD.,Neuro-Intensive Care Nursery Group, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Nihaal Reddy
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emanuele Orru
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathryn A Carson
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, The Charlotte R. Bloomberg Children's Center, Baltimore, MD.,Neuro-Intensive Care Nursery Group, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Vera Joanna Burton
- Neuro-Intensive Care Nursery Group, The Johns Hopkins School of Medicine, Baltimore, MD.,Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Carl E Stafstrom
- Neuro-Intensive Care Nursery Group, The Johns Hopkins School of Medicine, Baltimore, MD.,Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, The Charlotte R. Bloomberg Children's Center, Baltimore, MD.,Neuro-Intensive Care Nursery Group, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD.,Neuro-Intensive Care Nursery Group, The Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Conventional MRI. HANDBOOK OF CLINICAL NEUROLOGY 2018. [PMID: 29903441 DOI: 10.1016/b978-0-444-63956-1.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Conventional magnetic resonance imaging (MRI) allows for a detailed noninvasive visualization/examination of posterior fossa structures and represents a fundamental step in the diagnostic workup of many cerebellar disorders. In the first part of this chapter methodologic issues, like the correct choice of hardware (magnets, coils), pro and cons of the different MRI sequences, and patient management during the examination are discussed. In the second part, the MRI anatomy of the cerebellum, as noted on the various conventional MRI sequences, as well as a detailed description of cerebellar maturational processes from birth to childhood and into adulthood, are reported. Volumetric studies on the cerebellar growth based on three-dimensional MRI sequences are also presented. Moreover, we briefly discuss two main topics regarding conventional MRI of the cerebellum that have generated some debate in recent years: the differentiation between cerebellar atrophy, hypoplasia, and pontocerebellar hypoplasia, and signal changes of dentate nuclei after repetitive gadolinium-based contrast injections. The advantages and benefits of advanced neuroimaging techniques, including 1H magnetic resonance spectroscopy, diffusion-weighted imaging, diffusion tensor imaging, and perfusion-weighted imaging are discussed in the last section of the chapter.
Collapse
|
29
|
Carrasco M, Perin J, Jennings JM, Parkinson C, Gilmore MM, Chavez-Valdez R, Massaro AN, Koehler RC, Northington FJ, Tekes A, Lee JK. Cerebral Autoregulation and Conventional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. Pediatr Neurol 2018; 82:36-43. [PMID: 29622488 PMCID: PMC5960435 DOI: 10.1016/j.pediatrneurol.2018.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deviation of mean arterial blood pressure (MAP) from the range that optimizes cerebral autoregulatory vasoreactivity (optimal MAP) could increase neurological injury from hypoxic-ischemic encephalopathy (HIE). We tested whether a global magnetic resonance imaging (MRI) brain injury score and regional diffusion tensor imaging (DTI) are associated with optimal MAP in neonates with HIE. METHODS Twenty-five neonates cooled for HIE were monitored with the hemoglobin volume index. In this observational study, we identified optimal MAP and measured brain injury by qualitative and quantitative MRIs with the Neonatal Research Network (NRN) score and DTI mean diffusivity scalars. Optimal MAP and blood pressure were compared with brain injury. RESULTS Neonates with blood pressure measurements within optimal MAP during rewarming had less brain injury by NRN score (P = 0.040). Longer duration of MAP within optimal MAP during hypothermia correlated with higher mean diffusivity in the anterior centrum semiovale (P = 0.008) and pons (P = 0.002). Blood pressure deviation below optimal MAP was associated with lower mean diffusivity in cerebellar white matter (P = 0.033). Higher optimal MAP values related to lower mean diffusivity in the basal ganglia (P = 0.021), the thalamus (P = 0.006), the posterior limb of the internal capsule (P = 0.018), the posterior centrum semiovale (P = 0.035), and the cerebellar white matter (P = 0.008). Optimal MAP values were not associated with the NRN score. CONCLUSIONS The NRN score and the regional mean diffusivity scalars detected injury with mean arterial blood pressure deviations from the optimal MAP. Higher optimal MAP and lower mean diffusivity may be related because of cytotoxic edema and limited vasodilatory reserve at low MAP in injured brain. DTI detected injury with elevated optimal MAP better than the NRN score.
Collapse
Affiliation(s)
- Melisa Carrasco
- Department of Neurology, Division of Pediatric Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jamie Perin
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jacky M. Jennings
- Center for Child and Community Health Research (CCHR), Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charlamaine Parkinson
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland,Division of Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Maureen M. Gilmore
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland,Division of Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Raul Chavez-Valdez
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland,Division of Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - An N. Massaro
- Department of Pediatrics, Children’s National Medical Center, George Washington University School of Medicine, Washington, District of Columbia
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frances J. Northington
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland,Division of Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Aylin Tekes
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland,Department of Radiology, Division of Pediatric Radiology and Pediatric Neuroradiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer K. Lee
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Zheng Y, Wang X. The Applicability of Amide Proton Transfer Imaging in the Nervous System: Focus on Hypoxic-Ischemic Encephalopathy in the Neonate. Cell Mol Neurobiol 2018; 38:797-807. [PMID: 28942555 DOI: 10.1007/s10571-017-0552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/16/2017] [Indexed: 12/29/2022]
Abstract
In recent years, magnetic resonance imaging (MRI) has become more widely used in neonatal hypoxic-ischemic encephalopathy (HIE), involving, for example, evaluation of cerebral edema, white matter fiber bundle tracking, cerebral perfusion status, and assessment of brain metabolites. MRI has many imaging modalities. However, its application for assessing changes in the internal environment at the tissue and cellular level after hypoxia-ischemia remains a challenge and is currently the focus of intense research. Based on the exchange between amide protons of proteins and polypeptides and free water protons, amide proton transfer (APT) imaging can display changes in pH and protein concentrations in vivo. This paper is a review of the principles of APT imaging, with a focus on the potential application of APT imaging for neonatal HIE.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
31
|
Abstract
Diffusion tensor imaging (DTI) is a noninvasive neuroimaging tool assessing the organization of white-matter tracts and brain microstructure in vivo. The technique takes into account the three-dimensional (3D) direction of diffusion of water in space, the brownian movements of water being constrained by the brain microstructure. The main direction of diffusion in the brain is extracted to obtain the principal direction of axonal projection within a given voxel. Overall, the diffusion tensor is a mathematic analysis of the magnitude/directionality (anisotropy) of the movement of water molecules in 3D space. Tracts running in the white matter are subsequently reconstructed graphically with fiber tractography. Tractography can be applied to myelinated and unmyelinated fibers or axonopathy. Decreased fractional anisotropy in white-matter tracts occurs in cases of injury with disorganized or disrupted myelin sheaths. Furthermore, high angular resolution methods enable detection of fiber crossings or convergence. DTI is a modern tool which complements conventional magnetic resonance techniques and is particularly relevant to assess the organization of cerebellar tracts. Indeed, both the afferent and efferent pathways of the cerebellar circuitry passing through the inferior, middle, and superior cerebellar peduncles can be visualized in vivo, including in children. The microanatomy of the cerebellar cortex and cerebellar nuclei is also emerging as a future assessment. Applications in the field of cerebellar disorders are multiple, ranging from developmental disorders to adult-onset cerebellar ataxias.
Collapse
|