1
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W Wilson
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
2
|
Souza-Paula E, Polonio LCC, Zochio GP, da Silva KP, Kushima H, Dias-Junior CA. Anticontractile Effect of Perivascular Adipose Tissue But Not of Endothelium Is Enhanced by Hydrogen Sulfide Stimulation in Hypertensive Pregnant Rat Aortae. J Cardiovasc Pharmacol 2021; 76:715-729. [PMID: 32976209 DOI: 10.1097/fjc.0000000000000917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perivascular adipose tissue (PVAT) modulates the vascular tone. Hydrogen sulfide (H2S) is synthetized by cystathionine gamma-lyase (CSE) in brown PVAT. Modulation of vascular contractility by H2S is, in part, adenosine triphosphate (ATP)-sensitive potassium channels dependent. However, the role of PVAT-derived H2S in hypertensive pregnancy (HTN-Preg) is unclear. Therefore, we aimed to examine the involvement of H2S in the anticontractile effect of PVAT in aortae from normotensive and hypertensive pregnant rats. To this end, phenylephrine-induced contractions in the presence and absence of PVAT and endothelium in aortae from normotensive pregnant (Norm-Preg) and HTN-Preg rats were investigated. Maternal blood pressure, fetal-placental parameters, angiogenesis-related biomarkers, and H2S levels were also assessed. We found that circulating H2S is elevated in hypertensive pregnancy associated with angiogenic imbalance, fetal and placental growth restrictions, which revealed that there is H2S pathway activation. Moreover, under stimulated H2S formation PVAT, but not endothelium, reduced phenylephrine-induced contractions in aortae from HTN-Preg rats. Also, H2S synthesis inhibitor abolished anticontractile effects of PVAT and endothelium. Furthermore, anticontractile effect of PVAT, but not of endothelium, was eliminated by ATP-sensitive potassium channels blocker. In accordance, increases in H2S levels in PVAT and placenta, but not in aortae without PVAT, were also observed. In conclusion, anticontractile effect of PVAT is lost, at least in part, in HTN-Preg aortae and PVAT effect is ATP-sensitive potassium channels dependent in normotensive and hypertensive pregnant rat aortae. PVAT but not endothelium is responsive to the H2S stimulation in hypertensive pregnant rat aortae, implying a key role for PVAT-derived H2S under endothelial dysfunction.
Collapse
Affiliation(s)
- Edileia Souza-Paula
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Maeda K, Tasaki M, Ando Y, Ohtsubo K. Galectin-lattice sustains function of cationic amino acid transporter and insulin secretion of pancreatic β cells. J Biochem 2021; 167:587-596. [PMID: 31960919 DOI: 10.1093/jb/mvaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Maintenance of cell surface residency and function of glycoproteins by lectins are essential for regulating cellular functions. Galectins are β-galactoside-binding lectins and form a galectin-lattice, which regulates stability, clustering, membrane sub-domain localization and endocytosis of plasmalemmal glycoproteins. We have previously reported that galectin-2 (Gal-2) forms a complex with cationic amino acid transporter 3 (CAT3) in pancreatic β cells, although the biological significance of the molecular interaction between Gal-2 and CAT3 has not been elucidated. In this study, we demonstrated that the structure of N-glycan of CAT3 was either tetra- or tri-antennary branch structure carrying β-galactosides, which works as galectin-ligands. Indeed, CAT3 bound to Gal-2 using β-galactoside epitope. Moreover, the disruption of the glycan-mediated bindings between galectins and CAT3 significantly reduced cell surface expression levels of CAT3. The reduced cell surface residency of CAT3 attenuated the cellular arginine uptake activities and subsequently reduced nitric oxide production, and thus impaired the arginine-stimulated insulin secretion of pancreatic β cells. These results indicate that galectin-lattice stabilizes CAT3 by preventing endocytosis to sustain the arginine-stimulated insulin secretion of pancreatic β cells. This provides a novel cell biological insight into the endocrinological mechanism of nutrition metabolism and homeostasis.
Collapse
Affiliation(s)
- Kento Maeda
- Department of Analytical Biochemistry;, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan
| | - Masayoshi Tasaki
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukio Ando
- Depatment of Amyloidosis Research, Nagasaki International University, Nagasaki 859-3243, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry;, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan.,Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan
| |
Collapse
|
4
|
Zheng Z, Wang M, Cheng C, Liu D, Wu L, Zhu J, Qian X. Ginsenoside Rb1 reduces H2O2‑induced HUVEC dysfunction by stimulating the sirtuin‑1/AMP‑activated protein kinase pathway. Mol Med Rep 2020; 22:247-256. [PMID: 32377712 PMCID: PMC7248484 DOI: 10.3892/mmr.2020.11096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Endothelial dysfunction and senescence are closely associated with cardiovascular diseases including atherosclerosis and hypertension. Ginsenoside Rb1 (Rb1), the major active constituent of ginseng, has been investigated intensively because of its anti-obesity and anti-inflammatory effects. In a previous study, hydrogen peroxide (H2O2) was applied to induce human umbilical vein endothelial cell (HUVEC) aging. It was demonstrated that Sirtuin-1 (SIRT1) was activated by Rb1 to protect HUVECs from H2O2-induced senescence. However, the mechanisms are not fully understood. The present study examined the role of AMP-activated protein kinase (AMPK), an energy sensor of cellular metabolism, in the signaling pathway of SIRT1 during H2O2-stimulated HUVEC aging. It was identified that Rb1 restored the H2O2-induced reduction of SIRT1 expression, which was consistent with our previous study, together with the activation of AMPK phosphorylation. Using compound C, an AMPK inhibitor, the role of AMPK in the protective effect of Rb1 against H2O2-induced HUVEC senescence was examined. It was identified that the induction of phosphorylated AMPK by Rb1 markedly increased endothelial nitric oxide synthase expression and nitric oxide production, and suppressed PAI-1 expression, which were abrogated in HUVECs pretreated with compound C. Further experiments demonstrated that nicotinamide, a SIRT1 inhibitor, downregulated the phosphorylation of AMPK and reduced the protective effects of Rb1 against H2O2-induced endothelial aging. Taken together, these results provide new insights into the possible molecular mechanisms by which Rb1 protects against H2O2-induced HUVEC senescence via the SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Zhenda Zheng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Min Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Cailian Cheng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lin Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jieming Zhu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
5
|
Restini CBA, Ismail A, Kumar RK, Burnett R, Garver H, Fink GD, Watts SW. Renal perivascular adipose tissue: Form and function. Vascul Pharmacol 2018; 106:37-45. [PMID: 29454047 DOI: 10.1016/j.vph.2018.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/05/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
Renal sympathetic activity affects blood pressure in part by increasing renovascular resistance via release of norepinephrine (NE) from sympathetic nerves onto renal arteries. Here we test the idea that adipose tissue adjacent to renal blood vessels, i.e. renal perivascular adipose tissue (RPVAT), contains a pool of NE which can be released to alter renal vascular function. RPVAT was obtained from around the main renal artery/vein of the male Sprague Dawley rats. Thoracic aortic PVAT and mesenteric PVAT also were studied as brown-like and white fat comparators respectively. RPVAT was identified as a mix of white and brown adipocytes, because of expression of both brown-like (e.g. uncoupling protein 1) and white adipogenic genes. All PVATs contained NE (ng/g tissue, RPVAT:524 ± 68, TAPVAT:740 ± 16, MPVAT:96 ± 24). NE was visualized specifically in RPVAT adipocytes by immunohistochemistry. The presence of RPVAT (+RPVAT) did not alter the response of isolated renal arteries to NE compared to responses of arteries without RPVAT (-RPVAT). By contrast, the maximum contraction to the sympathomimetic tyramine was ~2× greater in the renal artery +PVAT versus -PVAT. Tyramine-induced contraction in +RPVAT renal arteries was reduced by the α1-adrenoceptor antagonist prazosin and the NE transporter inhibitor nisoxetine. These results suggest that tyramine caused release of NE from RPVAT. Renal denervation significantly (>50%) reduced NE content of RPVAT but did not modify tyramine-induced contraction of +RPVAT renal arteries. Collectively, these data support the existence of a releasable pool of NE in RPVAT that is independent of renal sympathetic innervation and has the potential to change renal arterial function.
Collapse
Affiliation(s)
- Carolina Baraldi A Restini
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Alex Ismail
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Ramya K Kumar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Robert Burnett
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States.
| |
Collapse
|
6
|
Almabrouk TAM, White AD, Ugusman AB, Skiba DS, Katwan OJ, Alganga H, Guzik TJ, Touyz RM, Salt IP, Kennedy S. High Fat Diet Attenuates the Anticontractile Activity of Aortic PVAT via a Mechanism Involving AMPK and Reduced Adiponectin Secretion. Front Physiol 2018; 9:51. [PMID: 29479319 PMCID: PMC5812172 DOI: 10.3389/fphys.2018.00051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 01/31/2023] Open
Abstract
Background and aim: Perivascular adipose tissue (PVAT) positively regulates vascular function through production of factors such as adiponectin but this effect is attenuated in obesity. The enzyme AMP-activated protein kinase (AMPK) is present in PVAT and is implicated in mediating the vascular effects of adiponectin. In this study, we investigated the effect of an obesogenic high fat diet (HFD) on aortic PVAT and whether any changes involved AMPK. Methods: Wild type Sv129 (WT) and AMPKα1 knockout (KO) mice aged 8 weeks were fed normal diet (ND) or HFD (42% kcal fat) for 12 weeks. Adiponectin production by PVAT was assessed by ELISA and AMPK expression studied using immunoblotting. Macrophages in PVAT were identified using immunohistochemistry and markers of M1 and M2 macrophage subtypes evaluated using real time-qPCR. Vascular responses were measured in endothelium-denuded aortic rings with or without attached PVAT. Carotid wire injury was performed and PVAT inflammation studied 7 days later. Key results: Aortic PVAT from KO and WT mice was morphologically indistinct but KO PVAT had more infiltrating macrophages. HFD caused an increased infiltration of macrophages in WT mice with increased expression of the M1 macrophage markers Nos2 and Il1b and the M2 marker Chil3. In WT mice, HFD reduced the anticontractile effect of PVAT as well as reducing adiponectin secretion and AMPK phosphorylation. PVAT from KO mice on ND had significantly reduced adiponectin secretion and no anticontractile effect and feeding HFD did not alter this. Wire injury induced macrophage infiltration of PVAT but did not cause further infiltration in KO mice. Conclusions: High-fat diet causes an inflammatory infiltrate, reduced AMPK phosphorylation and attenuates the anticontractile effect of murine aortic PVAT. Mice lacking AMPKα1 phenocopy many of the changes in wild-type aortic PVAT after HFD, suggesting that AMPK may protect the vessel against deleterious changes in response to HFD.
Collapse
Affiliation(s)
- Tarek A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Medical School, University of Zawia, Zawia, Libya
| | - Anna D White
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Azizah B Ugusman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Physiology, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Dominik S Skiba
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Jagiellonian University College of Medicine, Krakow, Poland
| | - Omar J Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Husam Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Medical School, University of Zawia, Zawia, Libya
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Jagiellonian University College of Medicine, Krakow, Poland
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Gélinas R, Dontaine J, Horman S, Beauloye C, Bultot L, Bertrand L. AMP-Activated Protein Kinase and O-GlcNAcylation, Two Partners Tightly Connected to Regulate Key Cellular Processes. Front Endocrinol (Lausanne) 2018; 9:519. [PMID: 30271380 PMCID: PMC6146136 DOI: 10.3389/fendo.2018.00519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is an important cellular energy sensor. Its activation under energetic stress is known to activate energy-producing pathways and to inactivate energy-consuming pathways, promoting ATP preservation and cell survival. AMPK has been shown to play protective role in many pathophysiological processes including cardiovascular diseases, diabetes, and cancer. Its action is multi-faceted and comprises short-term regulation of enzymes by direct phosphorylation as well as long-term adaptation via control of transcription factors and cellular events such as autophagy. During the last decade, several studies underline the particular importance of the interaction between AMPK and the post-translational modification called O-GlcNAcylation. O-GlcNAcylation means the O-linked attachment of a single N-acetylglucosamine moiety on serine or threonine residues. O-GlcNAcylation plays a role in multiple physiological cellular processes but is also associated with the development of various diseases. The first goal of the present review is to present the tight molecular relationship between AMPK and enzymes regulating O-GlcNAcylation. We then draw the attention of the reader on the putative importance of this interaction in different pathophysiological events.
Collapse
Affiliation(s)
- Roselle Gélinas
- Montreal Heart Institute, Université de Montreal, Montreal, QC, Canada
| | - Justine Dontaine
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Laurent Bultot
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Luc Bertrand
| |
Collapse
|