1
|
Niro A, Pignatelli F, Fallico M, Sborgia A, Passidomo F, Gigliola S, Nacucchi A, Sborgia G, Boscia G, Alessio G, Boscia F, Addabbo G, Reibaldi M, Avitabile T. Polyhexamethylene biguanide hydrochloride (PHMB)-properties and application of an antiseptic agent. A narrative review. Eur J Ophthalmol 2022; 33:11206721221124684. [PMID: 36083163 DOI: 10.1177/11206721221124684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The prevention and management of ocular surface infections is still one of the great challenges for ophthalmologists. The spread of antimicrobial resistance makes it necessary to use antiseptic substances with a broad antimicrobial spectrum. Polyhexamethylene biguanide hydrochloride (Polyhexanide, PHMB) is a broad-spectrum antiseptic with excellent tolerance and a low-risk profile. Its physicochemical action on the phospholipid membrane and DNA replication or repair mechanism, prevents or impedes the development of resistant bacterial strains. PHMB revealed its effective against numerous organisms like viruses, Gram-negative and Gram-positive bacteria, and fungi. Polyhexanide is commonly used as preservative in commercially available disinfecting solutions for contact lens care and in ophthalmic formulations at different concentrations ranging from 1 µg/ml to 50 µg/ml. The administration of 0.02% (200 µg/ml) PHMB is often the first-line therapy of Acanthamoeba keratitis. However, to date, only one close-out randomized controlled study tested the efficacy of 0.02% PHMB in Acanthamoeba keratitis and a phase III study is still ongoing. This paper reviews the antiseptic agent PHMB, focusing on biochemical mechanisms, safety profile and applications in ophthalmology.
Collapse
Affiliation(s)
- Alfredo Niro
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | - Fedele Passidomo
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | - Samuele Gigliola
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | | | - Giancarlo Sborgia
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Giacomo Boscia
- Eye Clinic Section, Department of Surgical Sciences, 9314University of Turin, Turin, Italy
| | - Giovanni Alessio
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Francesco Boscia
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Giuseppe Addabbo
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | - Michele Reibaldi
- Eye Clinic Section, Department of Surgical Sciences, 9314University of Turin, Turin, Italy
| | | |
Collapse
|
2
|
Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 2021; 18:342-358. [PMID: 33314723 PMCID: PMC8244012 DOI: 10.1111/iwj.13537] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022] Open
Abstract
Biofilms play a major role in delaying chronic wounds from healing. A wound infiltrated with biofilm, or "critically colonised" wound, may become clinically infected if the number of microbes exceeds a critical level. Chronic wound biofilms represent a significant treatment challenge by demonstrating recalcitrance towards antimicrobial agents. However, a "window of opportunity" may exist after wound debridement when biofilms are more susceptible to topical antiseptics. Here, we discuss the role of antiseptics in the management of chronic wounds and biofilm, focusing on povidone-iodine (PVP-I) in comparison with two commonly used antiseptics: polyhexanide (PHMB) and silver. This article is based on the literature reviewed during a focus group meeting on antiseptics in wound care and biofilm management, and on a PubMed search conducted in March 2020. Compared with PHMB and silver, PVP-I has a broader spectrum of antimicrobial activity, potent antibiofilm efficacy, no acquired bacterial resistance or cross-resistance, low cytotoxicity, good tolerability, and an ability to promote wound healing. PVP-I represents a viable therapeutic option in wound care and biofilm management, with the potential to treat biofilm-infiltrated, critically colonised wounds. We propose a practical algorithm to guide the management of chronic, non-healing wounds due to critical colonisation or biofilm, using PVP-I.
Collapse
Affiliation(s)
- Paulo J. Alves
- Wounds Research LaboratoryUniversidade Católica PortuguesaPortoPortugal
| | | | | | - Luc G. Gryson
- Belgian Defence Military Medical ComponentBrusselsBelgium
| | - Sylvie Meaume
- Department of Geriatrics and Wound Care UnitHospital Rothschild, APHP Assistance Publique Hôpitaux de Paris, Sorbonne UniversitéParisFrance
| | - Stan J. Monstrey
- Department of Plastic SurgeryGhent University HospitalGhentBelgium
| |
Collapse
|
3
|
Dydak K, Junka A, Dydak A, Brożyna M, Paleczny J, Fijalkowski K, Kubielas G, Aniołek O, Bartoszewicz M. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. Int J Mol Sci 2021; 22:3996. [PMID: 33924416 PMCID: PMC8069587 DOI: 10.3390/ijms22083996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.
Collapse
Affiliation(s)
- Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Agata Dydak
- Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Karol Fijalkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastow 45, 70-311 Szczecin, Poland;
| | - Grzegorz Kubielas
- Faculty of Health Sciences, Wroclaw Medical University, 50-996 Wroclaw, Poland;
| | - Olga Aniołek
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| |
Collapse
|
4
|
Abstract
Infection preventive practice of using disinfectants against SARS-CoV-2 has become the new normal due to the COVID-19 pandemic. Although disinfectants may not be applied directly to the human body, it remains at high risk of exposure including close skin contact on disinfected surfaces or during handling. This dermal contact, on a regular basis, can induce hazardous skin reactions like irritation, inflammation, and burning in severe conditions. Disinfectants are germicide chemicals that can penetrate the skin and create skin reactions that are usually regarded as irritant and allergic contact dermatitis. More importantly, disinfectants can react with skin components (proteins and lipids) to facilitate their skin penetration and disrupt the skin barrier function. Whereas the antimicrobial actions of disinfectants are well understood, much less is known regarding their dermatologic reactions, including but not limited to irritation and hypersensitivity. We reviewed the skin reactions created by those disinfectants against SARS-CoV-2 approved by the European Chemical Agency and the US Environmental Protection Agency.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam.
| | - Li Ching Wong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
5
|
Contact Allergy to Topical Drugs. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Mueller‐Wirth N, Buenter A, Jörg L, Ebo DG, Glatz M, Fernando SL, Spoerl D, Helbling A, Hausmann O, Gupta N, Pichler WJ. IgE-mediated chlorhexidine allergy-Cross-reactivity with other biguanide disinfectants. Allergy 2020; 75:3237-3247. [PMID: 32678912 DOI: 10.1111/all.14497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chlorhexidine (CHX) is a widely utilized disinfectant that can cause IgE-mediated urticaria/anaphylaxis. The cross-reactivity of patients with IgE-mediated CHX allergy with other disinfectants, which share structural similarities with CHX like polyhexanide (polyhexamethylene biguanide; PHMB), alexidine (ALX), or octenidine (OCT), is unknown. METHODS Forty-four patients with anaphylaxis or urticaria upon CHX exposure and positive skin prick test (SPT) and/or positive CHX ImmunoCAP test (Phadia TFS, Uppsala, Sweden) were recruited. IgE to the biguanide and/or hexamethylene structure was investigated with PHMB ImmunoCAP (n = 32) and by basophil activation tests (BAT) with CHX and ALX (n = 37). Inhibition tests of CHX and PHMB ImmunoCAPs by CHX, ALX, PHMB, and OCT were performed. RESULTS IgE reactivity to PHMB as surrogate marker for biguanide/hexamethylene reactivity was detected in 5/32 sera. Seven of 37 patients showed a positive BAT with ALX, but only under optimized conditions. Binding to CHX ImmunoCAP was inhibited by ALX in 1/32 sera, and binding to PHMB was blocked by ALX (1/5) and by OCT in another (1/5). In SPT, 9/10 patients were positive for CHX and 3 of them with ALX (only at highest concentration at 5 mg/mL). A further patient reacted primarily with OCT and showed IgE cross-reactivity with CHX, ALX, and PHMB. CONCLUSION The IgE response to CHX seems polyclonal. The chloroguanide ending of CHX is the main epitope for the IgE and is suitable as screening assay to detect CHX reactivity. IgE-reactivities with the biguanide or hexamethylene components of other disinfectants (ALX, PHMB) can be detected by SPT, PHMB ImmunoCAP, and ALX-BAT in 15%-33% of CHX-allergic patients.
Collapse
Affiliation(s)
| | - Antonia Buenter
- ADR‐AC GmbH Bern Switzerland
- Dep. of Rheumatology, Immunology and Allergology, Inselspital University of Bern Bern Switzerland
| | - Lukas Jörg
- Dep. of Rheumatology, Immunology and Allergology, Inselspital University of Bern Bern Switzerland
| | - Didier G. Ebo
- Department of Immunology ‐ Allergology – Rheumatology and the Infla‐Med Centre of Excellence University AntwerpAntwerp University Hospital Antwerpen Belgium
| | - Martin Glatz
- Allergiestation University of Zurich Zurich Switzerland
| | - Suran L. Fernando
- Faculty of Medicine and Health (Immunology and Infectious Diseases) University of Sydney Sydney NSW Australia
| | - David Spoerl
- Department of Clinical Immunology and Allergy HUG Geneva Geneva Switzerland
| | - Arthur Helbling
- Dep. of Rheumatology, Immunology and Allergology, Inselspital University of Bern Bern Switzerland
| | | | | | | |
Collapse
|
7
|
Sukakul T, Dahlin J, Pontén A, Antelmi A, Bruze M, Hamnerius N, Hauksson I, Isaksson M, Lejding T, Svedman C. Contact allergy to polyhexamethylene biguanide (polyaminopropyl biguanide). Contact Dermatitis 2020; 84:326-331. [PMID: 33098110 PMCID: PMC8048451 DOI: 10.1111/cod.13728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Background Polyaminopropyl biguanide (INCI name) and polyhexamethylene biguanide (PHMB) are polymeric biguanides. PHMB is a broad‐spectrum antimicrobial substance used as a preservative in many products. Due to our limited knowledge on PHMB contact allergy frequency and the fact that cases of allergic contact dermatitis to PHMB might be missed, we have included PHMB as a screening allergen since 2016. Objective To report the prevalence of positive patch test reactions to PHMB as a screening allergen in patients with suspected allergic contact dermatitis. Methods A retrospective analysis of 1760 patch tested patients from July 2016 to December 2018 was performed. Polyaminopropyl biguanide 2.0% aqua was included in the extended Malmö baseline series during the study period. Results Of all patients, 1204 (68.4%) were female. Positive patch test reactions were reported in 19 patients (1.1%). The most common sites of lesions were face, head, and neck (52.6%). There was a significant correlation between concomitant reactions to PHMB and other cosmetic‐related allergens. Conclusion The prevalence of positive reactions to PHMB was higher than that previously reported. Patch testing with PHMB should be performed in patients with dermatitis who have lesions on the face, head, and neck.
Collapse
Affiliation(s)
- Thanisorn Sukakul
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden.,Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jakob Dahlin
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Ann Pontén
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Annarita Antelmi
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Magnus Bruze
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Nils Hamnerius
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Inese Hauksson
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Marléne Isaksson
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Tina Lejding
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Svedman
- Lund University, Department of Occupational and Environmental Dermatology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
8
|
Johnson W, Boyer I, Zhu J, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Heldreth B. Safety Assessment of Polyaminopropyl Biguanide (Polyhexamethylene Biguanide Hydrochloride) as Used in Cosmetics. Int J Toxicol 2020; 39:26S-73S. [PMID: 33203268 DOI: 10.1177/1091581820958683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of Polyaminopropyl Biguanide (polyhexamethylene biguanide hydrochloride), which functions as a preservative in cosmetic products. The Panel reviewed relevant data relating to the safety of this ingredient and concluded that Polyaminopropyl Biguanide is safe in cosmetics in the present practices of use and concentration described in the safety assessment, when formulated to be nonirritating and nonsensitizing, which may be based on a quantitative risk assessment or other accepted methodologies. The Panel also concluded that the data are insufficient to determine the safety of Polyaminopropyl Biguanide in products that may be incidentally inhaled.
Collapse
Affiliation(s)
- Wilbur Johnson
- * 44002Cosmetic Ingredient Review Senior Scientific Analyst/Writer
| | - Ivan Boyer
- ** Former 44002Cosmetic Ingredient Review Toxicologist
| | - Jinqiu Zhu
- *** 44002Cosmetic Ingredient Review Toxicologist
| | | | | | - Ronald A Hill
- **** Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - James G Marks
- **** Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - Paul W Snyder
- **** Expert Panel for Cosmetic Ingredient Safety Member
| | - Bart Heldreth
- † 44002Cosmetic Ingredient Review Executive Director
| |
Collapse
|
9
|
Addressing the challenges in antisepsis: focus on povidone iodine. Int J Antimicrob Agents 2020; 56:106064. [DOI: 10.1016/j.ijantimicag.2020.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 12/15/2022]
|
10
|
Topical Drugs. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_38-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Goossens A, Gonçalo M. Contact Allergy to Topical Drugs. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_38-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|