1
|
Sato H, Kato A, Adachi H, Takahashi K, Arai H, Ito M, Namba F, Takahashi T. High oxygen exposure's impact on newborn mice: Temporal changes observed via micro-computed tomography. Exp Lung Res 2024; 50:127-135. [PMID: 38973401 DOI: 10.1080/01902148.2024.2375099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) impacts life expectancy and long-term quality of life. Currently, BPD mouse models exposed to high oxygen are frequently used, but to reevaluate their relevance to human BPD, we attempted an assessment using micro-computed tomography (µCT). METHODS Newborn wildtype male mice underwent either 21% or 95% oxygen exposure for 4 days, followed until 8 wk. Weekly µCT scans and lung histological evaluations were performed independently. RESULTS Neonatal hyperoxia for 4 days hindered lung development, causing alveolar expansion and simplification. Histologically, during the first postnatal week, the exposed group showed a longer mean linear intercept, enlarged alveolar area, and a decrease in alveolar number, diminishing by week 4. Weekly µCT scans supported these findings, revealing initially lower lung density in newborn mice, increasing with age. However, the high-oxygen group displayed higher lung density initially. This difference diminished over time, with no significant contrast to controls at 3 wk. Although no significant difference in total lung volume was observed at week 1, the high-oxygen group exhibited a decrease by week 2, persisting until 8 wk. CONCLUSION This study highlights µCT-detected changes in mice exposed to high oxygen. BPD mouse models might follow a different recovery trajectory than humans, suggesting the need for further optimization.
Collapse
Affiliation(s)
- Himeko Sato
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Akie Kato
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Hiroyuki Adachi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Kiichi Takahashi
- Department of Neonatology, Akita Red Cross Hospital, Akita City, Japan
| | - Hirokazu Arai
- Department of Neonatology, Akita Red Cross Hospital, Akita City, Japan
| | - Masato Ito
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe City, Japan
| | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| |
Collapse
|
2
|
Fontijn S, Balink SJA, Bonte M, Andrinopoulou ER, Duijts L, Kroon AA, Ciet P, Pijnenburg MW. Chest computed tomography in severe bronchopulmonary dysplasia: Comparing quantitative scoring methods. Eur J Radiol 2023; 169:111168. [PMID: 37897957 DOI: 10.1016/j.ejrad.2023.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is the most common complication of extreme preterm birth and structural lung abnormalities are frequently found in children with BPD. To quantify lung damage in BPD, three new Hounsfield units (HU) based chest-CT scoring methods were evaluated in terms of 1) intra- and inter-observer variability, 2) correlation with the validated Perth-Rotterdam-Annotated-Grid-Morphometric-Analysis (PRAGMA)-BPD score, and 3) correlation with clinical data. METHODS Chest CT scans of children with severe BPD were performed at a median of 7 months corrected age. Hyper- and hypo-attenuated regions were quantified using PRAGMA-BPD and three new HU based scoring methods (automated, semi-automated, and manual). Intra- and inter-observer variability was measured using intraclass correlation coefficients (ICC) and Bland-Altman plots. The correlation between the 4 scoring methods and clinical data was assessed using Spearman rank correlation. RESULTS Thirty-five patients (median gestational age 26.1 weeks) were included. Intra- and inter-observer variability was excellent for hyper- and hypo-attenuation regions for the manual HU method and PRAGMA-BPD (ICCs range 0.80-0.97). ICC values for the semi-automated HU method were poorer, in particular for the inter-observer variability of hypo- (0.22-0.71) and hyper-attenuation (-0.06-0.89). The manual HU method was highly correlated with PRAGMA-BPD score for both hyper- (ρs0.92, p < 0.001) and hypo-attenuation (ρs0.79, p < 0.001), while automated and semi-automated HU methods showed poor correlation for hypo- (ρs < 0.22) and good correlation for hyper-attenuation (ρs0.72-0.74, p < 0.001). Several scores of hyperattenuation correlated with the use of inhaled bronchodilators in the first year of life; two hypoattenuation scores correlated with birth weight. CONCLUSIONS PRAGMA-BPD and the manual HU method have the best reproducibility for quantification of CT abnormalities in BPD.
Collapse
Affiliation(s)
- S Fontijn
- Post-graduate School of Paediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - S J A Balink
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - M Bonte
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands
| | - E R Andrinopoulou
- Erasmus MC, University Medical Centre Rotterdam, Department of Biostatistics, Rotterdam, the Netherlands; Erasmus MC, University Medical Centre Rotterdam, Department of Epidemiology, Rotterdam, the Netherlands
| | - L Duijts
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Neonatology, Rotterdam, the Netherlands
| | - A A Kroon
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Neonatology, Rotterdam, the Netherlands
| | - P Ciet
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands; Erasmus MC, University Medical Centre Rotterdam, Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands; Policlinico Universitario, University of Cagliari, Cagliari, Italy
| | - M W Pijnenburg
- Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatrics, Division of Respiratory Medicine and Allergology, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Pugh CP, Ali S, Agarwal A, Matlock DN, Sharma M. Dynamic computed tomography for evaluation of tracheobronchomalacia in premature infants with bronchopulmonary dysplasia. Pediatr Pulmonol 2023; 58:3255-3263. [PMID: 37646125 PMCID: PMC10993911 DOI: 10.1002/ppul.26652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Dynamic computed tomography (dCT) gives real-time physiological information and objective descriptions of airway narrowing in tracheobronchomalacia (TBM). There is a paucity of literature in the evaluation of TBM by dCT in premature infants with bronchopulmonary dysplasia (BPD). The aim of this study is to describe the findings of dCT and resultant changes in management in premature infants with TBM. METHODS A retrospective study of 70 infants was performed. Infants included were <32 weeks gestation without major anomalies. TBM was defined as ≥50% expiratory reduction in cross-sectional area with severity defined as mild (50%-75%), moderate (≥75%-90%), or severe (≥90%). RESULTS Dynamic CT diagnosed malacia in 53% of infants. Tracheomalacia was identified in 49% of infants with severity as 76% mild, 18% moderate, and 6% severe. Bronchomalacia was identified in 43% of infants with varying severity (53% mild, 40% moderate, 7% severe). Resultant management changes included PEEP titration (44%), initiation of bethanechol (23%), planned tracheostomy (20%), extubation trial (13%), and inhaled ipratropium bromide (7%). CONCLUSION Dynamic CT is a useful noninvasive diagnostic tool for airway evaluation of premature infants. Presence and severity of TBM can provide actionable information to guide more precise clinical decision making.
Collapse
Affiliation(s)
- C. Preston Pugh
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sumera Ali
- Department of Radiology, Emory University, Children’s Hospital of Atlanta, GA
| | - Amit Agarwal
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - David N. Matlock
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Megha Sharma
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
4
|
Bush D, Juliano C, Bowler S, Tiozzo C. Development and Disorders of the Airway in Bronchopulmonary Dysplasia. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1127. [PMID: 37508624 PMCID: PMC10378517 DOI: 10.3390/children10071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a disorder characterized by arrested lung development, is a frequent cause of morbidity and mortality in premature infants. Parenchymal lung changes in BPD are relatively well-characterized and highly studied; however, there has been less emphasis placed on the role that airways disease plays in the pathophysiology of BPD. In preterm infants born between 22 and 32 weeks gestation, the conducting airways are fully formed but still immature and therefore susceptible to injury and further disruption of development. The arrest of maturation results in more compliant airways that are more susceptible to deformation and damage. Consequently, neonates with BPD are prone to developing airway pathology, particularly for patients who require intubation and positive-pressure ventilation. Airway pathology, which can be divided into large and small airways disease, results in increased respiratory morbidity in neonates with chronic lung disease of prematurity.
Collapse
Affiliation(s)
- Douglas Bush
- Division of Pediatric Pulmonology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Courtney Juliano
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| | - Selina Bowler
- Department of Pediatrics, New York University Langone-Long Island, Mineola, NY 11501, USA
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Mount Sinai Hospital, Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
5
|
Di Filippo P, Dodi G, Ciarelli F, Di Pillo S, Chiarelli F, Attanasi M. Lifelong Lung Sequelae of Prematurity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5273. [PMID: 35564667 PMCID: PMC9104309 DOI: 10.3390/ijerph19095273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
The clinical, functional, and structural pattern of chronic lung disease of prematurity has changed enormously in last years, mirroring a better perinatal management and an increasing lung immaturity with the survival of increasingly premature infants. Respiratory symptoms and lung function impairment related to prematurity seem to improve over time, but premature birth increases the likelihood of lung function impairment in late childhood, predisposing to chronic obstructive pulmonary disease (COPD). It is mandatory to identify those individuals born premature who are at risk for developing long-term lung disease through a better awareness of physicians, the use of standardized CT imaging scores, and a more comprehensive periodic lung function evaluation. The aim of this narrative review was to provide a systematic approach to lifelong respiratory symptoms, lung function impairment, and lung structural anomalies in order to better understand the specific role of prematurity on lung health.
Collapse
Affiliation(s)
- Paola Di Filippo
- Pediatric Allergy and Pulmonology Unit, Department of Pediatrics, University of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (F.C.); (S.D.P.); (F.C.); (M.A.)
| | | | | | | | | | | |
Collapse
|
6
|
Higano NS, Bates AJ, Gunatilaka CC, Hysinger EB, Critser PJ, Hirsch R, Woods JC, Fleck RJ. Bronchopulmonary dysplasia from chest radiographs to magnetic resonance imaging and computed tomography: adding value. Pediatr Radiol 2022; 52:643-660. [PMID: 35122130 PMCID: PMC8921108 DOI: 10.1007/s00247-021-05250-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common long-term complication of preterm birth. The chest radiograph appearance and survivability have evolved since the first description of BPD in 1967 because of improved ventilation and clinical strategies and the introduction of surfactant in the early 1990s. Contemporary imaging care is evolving with the recognition that comorbidities of tracheobronchomalacia and pulmonary hypertension have a great influence on outcomes and can be noninvasively evaluated with CT and MRI techniques, which provide a detailed evaluation of the lungs, trachea and to a lesser degree the heart. However, echocardiography remains the primary modality to evaluate and screen for pulmonary hypertension. This review is intended to highlight the important findings that chest radiograph, CT and MRI can contribute to precision diagnosis, phenotyping and prognosis resulting in optimal management and therapeutics.
Collapse
Affiliation(s)
- Nara S Higano
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alister J Bates
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chamindu C Gunatilaka
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erik B Hysinger
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul J Critser
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Russel Hirsch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert J Fleck
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, 3333 Burnet Ave., ML 5031, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
High-Resolution Computed Tomography Scores in Cases of Bronchopulmonary Dysplasia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5208993. [PMID: 35178448 PMCID: PMC8844384 DOI: 10.1155/2022/5208993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022]
Abstract
Background Bronchopulmonary dysplasia (BPD) carries a risk of long-term pulmonary sequelae. High-resolution computed tomography (HRCT) is a method of detecting such structural changes. This study is aimed at characterizing structural abnormalities associated with BPD and at evaluating the clinical findings in the newborn period associated with HRCT scores. Methods 28 patients born with a mean gestation age of 30 ± 2.9 weeks and diagnosed as BPD in their neonatal period were reevaluated when they were between the postnatal ages of 6 and 12 months. HRCT was performed in 20 patients with a history of moderate and severe BPD. Scans were interpreted by one radiologist using a scoring system. Results Patients were 9.8 ± 2.3 months at the time of reevaluation. The average HRCT score of patients was, respectively, 7.20 ± 4.05 with moderate and 7.40 ± 2.84 with severe BPD. The difference between them was not significant (p = 0.620). When moderate and severe groups were collected as a whole on the basis of physical findings and drug treatment, 6 had normal physical examination findings, no oxygen and no drug requirement; 14 had at least one finding at the time of reevaluation. No significant difference was detected in terms of HRCT score between the two groups (6.50 ± 3.83 versus 7.64 ± 3.30). Conclusions More studies are needed in terms of the role of HRCT in the assessment of BPD prognosis. A contemporary definition of BPD that correlates with respiratory morbidity in childhood is needed. Also, a new lung ultrasound technique for predicting the respiratory outcome in patients with BPD can be used instead of HRCT.
Collapse
|
8
|
Moschino L, Bonadies L, Baraldi E. Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia. Pediatr Pulmonol 2021; 56:3499-3508. [PMID: 33729686 PMCID: PMC8597033 DOI: 10.1002/ppul.25380] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD) still carries a heavy burden of morbidity and mortality in survivors of extreme prematurity. The disease is characterized by simplification of the alveolar structure, involving a smaller number of enlarged alveoli due to decreased septation and a dysmorphic pulmonary microvessel growth. These changes lead to persistent abnormalities mainly affecting the smaller airways, lung parenchyma, and pulmonary vasculature, which can be assessed with lung function tests and imaging techniques. Several longitudinal lung function studies have demonstrated that most preterm-born subjects with BPD embark on a low lung function trajectory, never achieving their full airway growth potential. They are consequently at higher risk of developing a chronic obstructive pulmonary disease-like phenotype later in life. Studies based on computer tomography and magnetic resonance imaging, have also shown that in these patients there is a persistence of lung abnormalities like emphysematous areas, bronchial wall thickening, interstitial opacities, and mosaic lung attenuation also in adult age. This review aims to outline the current knowledge of pulmonary and vascular growth in survivors of BPD and the evidence of their lung function and imaging up to adulthood.
Collapse
Affiliation(s)
- Laura Moschino
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, Padova University Hospital, Padova, Italy
| | - Luca Bonadies
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, Padova University Hospital, Padova, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, Padova University Hospital, Padova, Italy.,Institute of Pediatric Research (IRP), Fondazione Città della Speranza, Padova, Italy
| |
Collapse
|
9
|
Dahl MJ, Veneroni C, Lavizzari A, Bowen S, Emerson H, Rebentisch A, Dawson E, Summers K, Pettet L, Wang Z, Null DM, Yoder BA, Dellacà RL, Albertine KH. Early extubation to noninvasive respiratory support of former preterm lambs improves long-term respiratory outcomes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L248-L262. [PMID: 34009031 DOI: 10.1152/ajplung.00051.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Invasive mechanical ventilation (IMV) and exposure to oxygen-rich gas during early postnatal life are contributing factors for long-term pulmonary morbidities faced by survivors of preterm birth and bronchopulmonary dysplasia. The duration of IMV that leads to long-term pulmonary morbidities is unknown. We compared two durations of IMV (3 h vs. 6 days) during the first 6-7 days of postnatal life in preterm lambs to test the hypothesis that minimizing the duration of IMV will improve long-term respiratory system mechanics and structural outcomes later in life. Moderately preterm (∼85% gestation) lambs were supported by IMV for either 3 h or 6 days before weaning from all respiratory support to become former preterm lambs. Respiratory system mechanics and airway reactivity were assessed monthly from 1 to 6 mo of chronological postnatal age by the forced oscillation technique. Quantitative morphological measurements were made for smooth muscle accumulation around terminal bronchioles and indices of alveolar formation. Minimizing IMV to 3 h led to significantly better (P < 0.05) baseline respiratory system mechanics and less reactivity to methacholine in the first 3 mo of chronological age (2 mo corrected age), significantly less (P < 0.05) accumulation of smooth muscle around peripheral resistance airways (terminal bronchioles), and significantly better (P < 0.05) alveolarization at the end of 5 mo corrected age compared with continuous IMV for 6 days. We conclude that limiting the duration of IMV following preterm birth of fetal lambs leads to better respiratory system mechanics and structural outcomes later in life.
Collapse
Affiliation(s)
- Mar Janna Dahl
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Chiara Veneroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Anna Lavizzari
- U.O. di Neonatologia e Terapia Intensiva Neonatale, Department of Clinical Sciences and Community Health, University of Milan Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sydney Bowen
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Haleigh Emerson
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Andrew Rebentisch
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Elaine Dawson
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Kyle Summers
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Luke Pettet
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Zhengming Wang
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Donald M Null
- Division of Neonatology, University of California, Davis, California
| | - Bradley A Yoder
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Kurt H Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Vanhaverbeke K, Van Eyck A, Van Hoorenbeeck K, De Winter B, Snoeckx A, Mulder T, Verhulst S. Lung imaging in bronchopulmonary dysplasia: a systematic review. Respir Med 2020; 171:106101. [DOI: 10.1016/j.rmed.2020.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/19/2023]
|
11
|
Ren Z, Fang X, Zhang Q, Mai YG, Tang XY, Wang QQ, Lai CH, Mo WH, Dai YH, Meng Q, Wu J, Ao ZZ, Jiang HQ, Yang Y, Qu LH, Deng CB, Wei W, Li Y, Wang QI, Yang J. Use of Autologous Cord Blood Mononuclear Cells Infusion for the Prevention of Bronchopulmonary Dysplasia in Extremely Preterm Neonates: A Study Protocol for a Placebo-Controlled Randomized Multicenter Trial [NCT03053076]. Front Pediatr 2020; 8:136. [PMID: 32300579 PMCID: PMC7142259 DOI: 10.3389/fped.2020.00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Despite the rapid advance of neonatal care, bronchopulmonary dysplasia (BPD) remains a significant burden for the preterm population, and there is a lack of effective intervention. Stem cell depletion because of preterm birth is regarded as one of the underlying pathological mechanisms for the arrest of alveolar and vascular development. Preclinical and small-sample clinical studies have proven the efficacy and safety of stem cells in treating and preventing lung injury. However, there are currently no randomized clinical trials (RCTs) investigating the use of autologous cord blood mononuclear cells (ACBMNC) for the prevention of BPD in premature infants. The purpose of this study is to investigate the effects of infusion of ACBMNC for the prevention of BPD in preterm neonates <28 weeks. Methods: In this prospective, randomized controlled double-blind multi-center clinical trial, 200 preterm neonates <28 weeks gestation will be randomly assigned to receive intravenous ACBMNC infusion (5 × 107 cells/kg) or placebo (normal saline) within 24 h after birth in a 1:1 ratio using a central randomization system. The primary outcome will be survival without BPD at 36 weeks of postmenstrual age or at discharge, whichever comes first. The secondary outcomes will include the mortality rate, other common preterm complication rates, respiratory support duration, length, and cost of hospitalization, and long-term outcomes after a 2-year follow-up. Conclusion: This will be the first randomized, controlled, blinded trial to evaluate the efficacy of ACBMNC infusion as a prevention therapy for BPD. The results of this trial will provide valuable clinical evidence for recommendations on the management of BPD in extremely preterm infants. Clinical Trial Registration: ClinicalTrials.gov, NCT03053076, registered 02/14/2017, retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S0006WN4&selectaction=Edit&uid=U0002PLA&ts=2&cx=9y23d4 (Additional File 2).
Collapse
Affiliation(s)
- Zhuxiao Ren
- Department of Neonatology, School of Medicine, Jinan University, Guangzhou, China
| | - Xu Fang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi Zhang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
| | - Y. G. Mai
- Department of Neonatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - X. Y. Tang
- Department of Neonatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q. Q. Wang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - C. H. Lai
- Department of Neonatology, Zhongshan Boai Hospital, Zhongshan, China
| | - W. H. Mo
- Department of Neonatology, Foshan Chancheng Central Hospital, Foshan, China
| | - Y. H. Dai
- Department of Neonatology, Foshan Women and Children Hospital, Foshan, China
| | - Q. Meng
- Department of Neonatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Neonatology, Hexian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Z. Z. Ao
- Department of Neonatology, Heyuan Women and Children Hospital, Heyuan, China
| | - H. Q. Jiang
- Department of Neonatology, Jiangmen Women and Children HospitalJiangmen, China
| | - Yong Yang
- Department of Neonatology, Dongguan Women and Children Hospital, Dongguan, China
| | - L. H. Qu
- Department of Neonatology, Guangzhou Huadu Women and Children Hospital, Guangzhou, China
| | - C. B. Deng
- Department of Neonatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- Guang Dong Cord Blood and Stem Cell Bank, Guangzhou, China
| | - Yongsheng Li
- Guang Dong Cord Blood and Stem Cell Bank, Guangzhou, China
| | - QI Wang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
- Guang Dong Cord Blood and Stem Cell Bank, Guangzhou, China
| | - Jie Yang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Duijts L, van Meel ER, Moschino L, Baraldi E, Barnhoorn M, Bramer WM, Bolton CE, Boyd J, Buchvald F, Del Cerro MJ, Colin AA, Ersu R, Greenough A, Gremmen C, Halvorsen T, Kamphuis J, Kotecha S, Rooney-Otero K, Schulzke S, Wilson A, Rigau D, Morgan RL, Tonia T, Roehr CC, Pijnenburg MW. European Respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia. Eur Respir J 2020; 55:13993003.00788-2019. [PMID: 31558663 DOI: 10.1183/13993003.00788-2019] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
This document provides recommendations for monitoring and treatment of children in whom bronchopulmonary dysplasia (BPD) has been established and who have been discharged from the hospital, or who were >36 weeks of postmenstrual age. The guideline was based on predefined Population, Intervention, Comparison and Outcomes (PICO) questions relevant for clinical care, a systematic review of the literature and assessment of the evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. After considering the balance of desirable (benefits) and undesirable (burden, adverse effects) consequences of the intervention, the certainty of the evidence, and values, the task force made conditional recommendations for monitoring and treatment of BPD based on very low to low quality of evidence. We suggest monitoring with lung imaging using ionising radiation in a subgroup only, for example severe BPD or recurrent hospitalisations, and monitoring with lung function in all children. We suggest to give individual advice to parents regarding daycare attendance. With regards to treatment, we suggest the use of bronchodilators in a subgroup only, for example asthma-like symptoms, or reversibility in lung function; no treatment with inhaled or systemic corticosteroids; natural weaning of diuretics by the relative decrease in dose with increasing weight gain if diuretics are started in the neonatal period; and treatment with supplemental oxygen with a saturation target range of 90-95%. A multidisciplinary approach for children with established severe BPD after the neonatal period into adulthood is preferable. These recommendations should be considered until new and urgently needed evidence becomes available.
Collapse
Affiliation(s)
- Liesbeth Duijts
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands .,Dept of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Evelien R van Meel
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laura Moschino
- Dept of Women's and Children's Health, University of Padua, Padua, Italy
| | - Eugenio Baraldi
- Dept of Women's and Children's Health, University of Padua, Padua, Italy
| | | | - Wichor M Bramer
- Medical Library, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charlotte E Bolton
- NIHR Nottingham BRC Respiratory Theme and Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | | | - Frederik Buchvald
- Pediatric Pulmonary Service, DBLC, Rigshospitalet, Copenhagen, Denmark
| | | | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Refika Ersu
- Division of Respirology, Marmara University Istanbul, Istanbul, Turkey.,Division of Respirology, University of Ottowa, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Anne Greenough
- Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Thomas Halvorsen
- Dept of Pediatrics, Haukeland University Hospital, Bergen, Norway.,Dept of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Sailesh Kotecha
- Dept of Child Health, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Sven Schulzke
- Dept of Neonatology, University Children's Hospital Basel UKBB, Basel, Switzerland
| | - Andrew Wilson
- Dept of Respiratory and Sleep Medicine, Princess Margaret Hospital for Children, Perth, Australia
| | - David Rigau
- Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Rebecca L Morgan
- Dept of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Thomy Tonia
- Insitute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Charles C Roehr
- Dept of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK.,Newborn Services, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| | - Marielle W Pijnenburg
- Dept of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
14
|
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of extreme prematurity, and its rate is not improving, despite advances in perinatal intensive care. Children with BPD diagnosed in the neonatal period have higher risks for hospitalizations for respiratory problems over the first few years of life, and they have more asthma in later childhood. Neonates diagnosed with BPD have substantial airway obstruction on lung function testing in later childhood and early adulthood, and many are destined to develop adult chronic obstructive pulmonary disease. Survivors with neonatal BPD have more adverse motor function, worse cognitive development and poorer academic progress than those without BPD. Long-term outcomes for children born extremely preterm will improve if the rate of BPD can be substantially reduced.
Collapse
Affiliation(s)
- Jeanie L Y Cheong
- Neonatal Services, Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Lex W Doyle
- Neonatal Services, Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|