1
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
2
|
Velayutham N, Garbern JC, Elwell HLT, Zhuo Z, Rüland L, Elcure Alvarez F, Frontini S, Rodriguez Carreras Y, Eichholtz M, Ricci‐Blair E, Shaw JY, Bouffard AH, Sokol M, Mancheño Juncosa E, Rhoades S, van den Berg D, Kreymerman A, Aoyama J, Höfflin J, Ryan H, Ho Sui S, Lee RT. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc 2024; 13:e033155. [PMID: 38934864 PMCID: PMC11255683 DOI: 10.1161/jaha.123.033155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 μM), LOM612 (FOXO relocator, 5 μM), AS1842856 (FOXO inhibitor, 1 μM), or RCM-1 (FOXM1 inhibitor, 1 μM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
| | - Hannah L. T. Elwell
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Zhu Zhuo
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Laura Rüland
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Farid Elcure Alvarez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Sara Frontini
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Yago Rodriguez Carreras
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Marie Eichholtz
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Elisabeth Ricci‐Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jeanna Y. Shaw
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Aldric H. Bouffard
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Estela Mancheño Juncosa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | - Daphne van den Berg
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | | | - Shannan Ho Sui
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
3
|
Diagnosis in Neuroendocrine Neoplasms: From Molecular Biology to Molecular Imaging. Cancers (Basel) 2022; 14:cancers14102514. [PMID: 35626118 PMCID: PMC9139608 DOI: 10.3390/cancers14102514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms are a small group of malignancies with a diverse prognosis and behaviour. In order to offer an adequate treatment, physicians need to perform a proper diagnosis, staging and stratification. This review aims to help to integrate the information from pathology, immunohistochemistry, molecular biology and imaging to guide this process. Abstract Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumours with a diverse behaviour, biology and prognosis, whose incidence is gradually increasing. Their diagnosis is challenging and a multidisciplinary approach is often required. The combination of pathology, molecular biomarkers, and the use of novel imaging techniques leads to an accurate diagnosis and a better treatment approach. To determine the functionality of the tumour, somatostatin receptor expression, differentiation, and primary tumour origin are the main determining tumour-dependent factors to guide treatment, both in local and metastatic stages. Until recently, little was known about the biological behaviour of these tumours. However, in recent years, many advances have been achieved in the molecular characterization and diagnosis of NENs. The incorporation of novel radiotracer-based imaging techniques, such as 68Gallium-DOTATATE PET-CT, has significantly increased diagnostic sensitivity, while introducing the theragnosis concept, offering new treatment strategies. Here, we will review current knowledge and novelties in the diagnosis of NENs, including molecular biology, pathology, and new radiotracers.
Collapse
|
4
|
Carpizo DR, Harris CR. Genetic Drivers of Ileal Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13205070. [PMID: 34680217 PMCID: PMC8533727 DOI: 10.3390/cancers13205070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although ileal neuroendocrine tumors are the most common tumors of the small intestine, they are not well-defined at the genetic level. Unlike most cancers, they have an unusually low number of mutations, and also lack recurrently mutated genes. Moreover ileal NETs have been difficult to study in the laboratory because there were no animal models and because cell lines were generally unavailable. But recent advances, including the first ileal NET mouse model as well as methods for culturing patient tumor samples, have been described and have already helped to identify IGF2 and CDK4 as two of the genetic drivers for this tumor type. These advances may help in the development of new treatments for patients. Abstract The genetic causes of ileal neuroendocrine tumors (ileal NETs, or I-NETs) have been a mystery. For most types of tumors, key genes were revealed by large scale genomic sequencing that demonstrated recurrent mutations of specific oncogenes or tumor suppressors. In contrast, genomic sequencing of ileal NETs demonstrated a distinct lack of recurrently mutated genes, suggesting that the mechanisms that drive the formation of I-NETs may be quite different than the cell-intrinsic mutations that drive the formation of other tumor types. However, recent mouse studies have identified the IGF2 and RB1 pathways in the formation of ileal NETs, which is supported by the subsequent analysis of patient samples. Thus, ileal NETs no longer appear to be a cancer without genetic causes.
Collapse
|
5
|
Rinke A, Auernhammer CJ, Bodei L, Kidd M, Krug S, Lawlor R, Marinoni I, Perren A, Scarpa A, Sorbye H, Pavel ME, Weber MM, Modlin I, Gress TM. Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine? Gut 2021; 70:1768-1781. [PMID: 33692095 DOI: 10.1136/gutjnl-2020-321300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasia (GEPNEN) comprises clinically as well as prognostically diverse tumour entities often diagnosed at late stage. Current classification provides a uniform terminology and a Ki67-based grading system, thereby facilitating management. Advances in the study of genomic and epigenetic landscapes have amplified knowledge of tumour biology and enhanced identification of prognostic and potentially predictive treatment subgroups. Translation of this genomic and mechanistic biology into advanced GEPNEN management is limited. 'Targeted' treatments such as somatostatin analogues, peptide receptor radiotherapy, tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors are treatment options but predictive tools are lacking. The inability to identify clonal heterogeneity and define critical oncoregulatory pathways prior to therapy, restrict therapeutic efficacy as does the inability to monitor disease status in real time. Chemotherapy in the poor prognosis NEN G3 group, though associated with acceptable response rates, only leads to short-term tumour control and their molecular biology requires delineation to provide new and more specific treatment options.The future requires an exploration of the NEN tumour genome, its microenvironment and an identification of critical oncologic checkpoints for precise drug targeting. In the advance to personalised medical treatment of patients with GEPNEN, clinical trials need to be based on mechanistic and multidimensional characterisation of each tumour in order to identify the therapeutic agent effective for the individual tumour.This review surveys advances in NEN research and delineates the current status of translation with a view to laying the basis for a genome-based personalised medicine management of advanced GEPNEN.
Collapse
Affiliation(s)
- Anja Rinke
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine IV and Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Ludwig Maximilian University, LMU Klinikum, Munich, Germany
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Sebastian Krug
- Clinic for Internal Medicine I, Martin Luther University, Halle, Germany
| | - Rita Lawlor
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Aldo Scarpa
- Applied Research on Cancer Centre, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Marianne Ellen Pavel
- Department of Internal Medicine I, Endocrinology, University of Erlangen, Erlangen, Germany
| | - Matthias M Weber
- Department of Internal Medicine I, Endocrinology, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Irvin Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| |
Collapse
|
6
|
Targeting HDACs in Pancreatic Neuroendocrine Tumor Models. Cells 2021; 10:cells10061408. [PMID: 34204116 PMCID: PMC8228033 DOI: 10.3390/cells10061408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Compared to pancreatic adenocarcinoma (PDAC), pancreatic neuroendocrine tumors (PanNET) represent a rare and heterogeneous tumor entity. In addition to surgical resection, several therapeutic approaches, including biotherapy, targeted therapy or chemotherapy are applicable. However, primary or secondary resistance to current therapies is still challenging. Recent genome-wide sequencing efforts in PanNET identified a large number of mutations in pathways involved in epigenetic modulation, including acetylation. Therefore, targeting epigenetic modulators in neuroendocrine cells could represent a new therapeutic avenue. Detailed information on functional effects and affected signaling pathways upon epigenetic targeting in PanNETs, however, is missing. The primary human PanNET cells NT-3 and NT-18 as well as the murine insulinoma cell lines beta-TC-6 (mouse) and RIN-T3 (rat) were treated with the non-selective histone-deacetylase (HDAC) inhibitor panobinostat (PB) and analyzed for functional effects and affected signaling pathways by performing Western blot, FACS and qPCR analyses. Additionally, NanoString analysis of more than 500 potentially affected targets was performed. In vivo immunohistochemistry (IHC) analyses on tumor samples from xenografts and the transgenic neuroendocrine Rip1Tag2-mouse model were investigated. PB dose dependently induced cell cycle arrest and apoptosis in neuroendocrine cells in human and murine species. HDAC inhibition stimulated redifferentiation of human primary PanNET cells by increasing mRNA-expression of somatostatin receptors (SSTRs) and insulin production. In addition to hyperacetylation of known targets, PB mediated pleitropic effects via targeting genes involved in the cell cycle and modulation of the JAK2/STAT3 axis. The HDAC subtypes are expressed ubiquitously in the existing cell models and in human samples of metastatic PanNET. Our results uncover epigenetic HDAC modulation using PB as a promising new therapeutic avenue in PanNET, linking cell-cycle modulation and pathways such as JAK2/STAT3 to epigenetic targeting. Based on our data demonstrating a significant impact of HDAC inhibition in clinical relevant in vitro models, further validation in vivo is warranted.
Collapse
|
7
|
Briest F, Koziolek EJ, Albrecht J, Schmidt F, Bernsen MR, Haeck J, Kühl AA, Sedding D, Hartung T, Exner S, Welzel M, Fischer C, Grötzinger C, Brenner W, Baum RP, Grabowski P. Does the proteasome inhibitor bortezomib sensitize to DNA-damaging therapy in gastroenteropancreatic neuroendocrine neoplasms? - A preclinical assessment in vitro and in vivo. Neoplasia 2020; 23:80-98. [PMID: 33246310 PMCID: PMC7701025 DOI: 10.1016/j.neo.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Well-differentiated gastroenteropancreatic neuroendocrine neoplasms are rare tumors with a slow proliferation. They are virtually resistant to many DNA-damaging therapeutic approaches, such as chemo- and external beam therapy, which might be overcome by DNA damage inhibition induced by proteasome inhibitors such as bortezomib. METHODS AND RESULTS In this study, we assessed several combined treatment modalities in vitro and in vivo. By cell-based functional analyses, in a 3D in ovo and an orthotopic mouse model, we demonstrated sensitizing effects of bortezomib combined with cisplatin, radiation and peptide receptor radionuclide therapy (PRRT). By gene expression profiling and western blot, we explored the underlying mechanisms, which resulted in an impaired DNA damage repair. Therapy-induced DNA damage triggered extrinsic proapoptotic signaling as well as the induction of cell cycle arrest, leading to a decreased vital tumor volume and altered tissue composition shown by magnetic resonance imaging and F-18-FDG-PET in vivo, however with no significant additional benefit related to PRRT alone. CONCLUSIONS We demonstrated that bortezomib has short-term sensitizing effects when combined with DNA damaging therapy by interfering with DNA repair in vitro and in ovo. Nevertheless, due to high tumor heterogeneity after PRRT in long-term observations, we were not able to prove a therapeutic advantage of bortezomib-combined PRRT in an in vivo mouse model.
Collapse
Affiliation(s)
- Franziska Briest
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität (FU) Berlin, Berlin, Germany.
| | - Eva J Koziolek
- German Cancer Consortium (DKTK), Germany; Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Albrecht
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany
| | - Fränze Schmidt
- German Cancer Consortium (DKTK), Germany; Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute for Biochemistry and Biotechnology, Martin-Luther-University (MLU) Halle-Wittenberg, Halle (Saale), Germany
| | | | - Joost Haeck
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Dagmar Sedding
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Institute of Biology, Humboldt-Universität (HU) Berlin, Berlin, Germany
| | - Teresa Hartung
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Samantha Exner
- Department of Hepatology and Gastroenterology and Molecular Cancer Research Center, Tumor Targeting Laboratory, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Welzel
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Christian Fischer
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Carsten Grötzinger
- German Cancer Consortium (DKTK), Germany; Department of Hepatology and Gastroenterology and Molecular Cancer Research Center, Tumor Targeting Laboratory, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Winfried Brenner
- German Cancer Consortium (DKTK), Germany; Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Germany; Berlin Experimental Radionuclide Imaging Center (BERIC), Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Richard P Baum
- Department of Nuclear Medicine, Zentralklinik Bad Berka GmbH, Bad Berka, Germany; CURANOSTICUM Wiesbaden-Frankfurt, DKD Helios Clinic, Wiesbaden, Germany
| | - Patricia Grabowski
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Gastroenterology and Endocrinology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany; Department of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|