1
|
Ramachandran G, Pottakkat B. Probiotics-A Promising Novel Therapeutic Approach in the Management of Chronic Liver Diseases. J Med Food 2024; 27:467-476. [PMID: 38574254 DOI: 10.1089/jmf.2023.k.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
An increased incidence of liver diseases has been observed in recent years and is associated with gut dysbiosis, which causes bacterial infection, intestinal permeability, and further leads to disease-related complications. Probiotics, active microbial strains, are gaining more clinical importance due to their beneficial effect in the management of many diseases, including liver diseases. Clinical scenarios show strong evidence that probiotics have efficacy in treating liver diseases due to their ability to improve epithelial barrier function, prevent bacterial translocation, and boost the immune system. Moreover, probiotics survive both bile and gastric acid to reach the gut and exert their health benefit. Evidence shows that probiotics are a promising approach to prevent several complications in clinical practice. Herein, we discuss the recent evidence, challenges, and appropriate use of probiotics in managing advanced liver diseases, which may have an impact on future therapeutic strategies. Furthermore, the superior effect of strain-specific probiotics and their efficacy and safety in managing liver diseases are discussed.
Collapse
Affiliation(s)
- Gokulapriya Ramachandran
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
2
|
Gu F, Zhu S, Hou J, Tang Y, Liu JX, Xu Q, Sun HZ. The hindgut microbiome contributes to host oxidative stress in postpartum dairy cows by affecting glutathione synthesis process. MICROBIOME 2023; 11:87. [PMID: 37087457 PMCID: PMC10122372 DOI: 10.1186/s40168-023-01535-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dairy cows are susceptible to postpartum systemic oxidative stress (OS), which leads to significant production loss and metabolic disorders. The gut microbiota has been linked to host health and stress levels. However, to what extent the gut microbiota is associated with postpartum OS remains unknown. In this study, the contribution of the fecal microbiota to postpartum systemic OS and its underlying mechanisms were investigated by integrating 16S rRNA gene sequencing, metagenomics, and metabolomics in postpartum dairy cattle and by transplanting fecal microbiota from cattle to mice. RESULTS A strong link was found between fecal microbial composition and postpartum OS, with an explainability of 43.1%. A total of 17 significantly differential bacterial genera and 19 species were identified between cows with high (HOS) and low OS (LOS). Among them, 9 genera and 16 species showed significant negative correlations with OS, and Marasmitruncus and Ruminococcus_sp._CAG:724 had the strongest correlations. The microbial functional analysis showed that the fecal microbial metabolism of glutamine, glutamate, glycine, and cysteine involved in glutathione synthesis was lower in HOS cows. Moreover, 58 significantly different metabolites were identified between HOS and LOS cows, and of these metabolites, 19 were produced from microbiota or cometabolism of microbiota and host. Furthermore, these microbial metabolites were enriched in the metabolism of glutamine, glutamate, glycine, and cysteine. The mice gavaged with HOS fecal microbiota had significantly higher OS and lower plasma glutathione peroxidase and glutathione content than those orally administered saline or LOS fecal microbiota. CONCLUSIONS Integrated results suggest that the fecal microbiota is responsible for OS and that lower glutathione production plays a causative role in HOS. These findings provide novel insights into the mechanisms of postpartum OS and potential regulatory strategies to alleviate OS in dairy cows. Video Abstract.
Collapse
Affiliation(s)
- Fengfei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifan Tang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Lin X, Ju L, Cheng Q, Jiang Y, Hou Q, Hu Z, Wang Y, Wang Z. Comparison of growth performance and rumen metabolic pathways in sheep and goats under the same feeding pattern. Front Vet Sci 2023; 10:1013252. [PMID: 36846256 PMCID: PMC9948245 DOI: 10.3389/fvets.2023.1013252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Diet and species are important factors affecting the rumen microbiota, with roughage stimulating rumen development and concentrate feeds being broken down by the decomposition of Ruminal flora to provide the organism with a large amount of energy. This study aimed to explore the effects of host and dietary factors on rumen flora composition and diversity, as well as on host metabolism. The study reports the research conducted on 5-month-old male Small-tail Han sheep and 5-month-old male Boer goat, each with an average weight of 33.87 ± 1.70 kg. Five animals of each species were divided into two groups, namely, the S group (Small-tail Han sheep) and the B group (Boer goat). The experiment was carried out in two various periods, namely, X and Y for groups S and B, respectively. The rations were fed with concentrate-to-roughage ratios of 3:7 and 5:5, respectively. Growth performance was measured by the weight increase index. The results showed that, under the same raising conditions, the ratio between body weight increases and the amount of feed was lower in the S group than in the B group, but the differences were not significant. According to the analysis of the apparent digestibility ratio of nutrition ingredients, the XS group had a significantly higher apparent digestibility ratio for acid detergent fiber than the XB group (p < 0.05). Even though the analysis of rumen fermentation parameters showed that the rumen pH has no significant differences between the XS and XB groups, it was significantly lower in the YS group than in the YB group. The XS group contained a significantly lower content of total volatile fatty acids than the XB group (p < 0.05). Analysis of the 16S rDNA sequencing results revealed that, compared to the B group, the S group was highly enriched with the following bacteria: Proteobacteria, γ-proteobacteria, Aeromonadales, and Succinivibrionaceae. Thus, the host species affected the abundance and diversity of rumen bacteria. Feed utilization efficiency of Small-tail Han sheep was higher than Boer goats, which might be specifically associated with Succinivibrionaceae. The results from this study show that animals belonging to the same family but different genera and species can differ in metabolic pathways even when they are provided with the same animal feed.
Collapse
Affiliation(s)
| | | | - Qianjin Cheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Yue Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qiuling Hou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Zhiyong Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Yun Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | | |
Collapse
|
4
|
Chen S, Ren Z, Huo Y, Yang W, Peng L, Lv H, Nie L, Wei H, Wan C. Targeting the gut microbiota to investigate the mechanism of Lactiplantibacillus plantarum 1201 in negating colitis aggravated by a high-salt diet. Food Res Int 2022; 162:112010. [DOI: 10.1016/j.foodres.2022.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|
5
|
Wang Y, Xia H, Yang Q, Yang D, Liu S, Cui Z. Evaluating Starter Feeding on Ruminal Function in Yak Calves: Combined 16S rRNA Sequencing and Metabolomics. Front Microbiol 2022; 13:821613. [PMID: 35733970 PMCID: PMC9207444 DOI: 10.3389/fmicb.2022.821613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
For young ruminants, starter feeding can effectively facilitate the growth and development of rumen in ruminants, but the development of rumen is an important physiological challenge as it remains unclear for the mechanism of starter feeding stimulating. In this study, we performed an analysis of ruminal microbiota and their metabolites in yak calves to explore how the ruminal microbiota and their metabolites stimulate the ruminal function. This study associated 16S rRNA sequencing with liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to evaluate the effects of starter feeding on ruminal microbiota diversity and metabolites in yak calves. We designed the experiment using 20 yak calves that were assigned equally into 2 groups, based on feeding milk replacer; the control (RA) group was fed with alfalfa hay while the treatment (RAS) group was fed with alfalfa hay and starter. After the experiment, we investigated the ruminal microbiota and metabolites through 16S rRNA sequencing and LC-MS-based metabolomics. During the preweaning period, the RAS group significantly promoted the growth performance and ruminal development in yak calves, including increases in body weight, chest girth, and development of rumen (P < 0.05). The RAS group increased the relative abundance of Bacteroidota, Proteobacteria, Chloroflexi, Synergistota, and Spirochaetota and decreased the abundance of Firmicutes, Desulfobacterota, Actinobacteriota, and Actinobacteriota at the phylum level (P < 0.05). At the genus level, the ruminal content of the RAS group was significantly enriched for Rikenellaceae_RC9_gut_group and Ruminococcus, while depleted for Prevotella, Christensenellaceae_R-7_group, and NK4A214_group (P < 0.05). A total of 37 metabolites were identified between the RA group and the RAS group, of which 15 metabolites were upregulated and 22 metabolites were downregulated compared with the RA group. Metabolic pathway analyses indicated that upregulated the metabolites of the RAS group yak calves were related to carbohydrate metabolism, ubiquinone, and other terpenoid-quinone biosynthesis, while the downregulated metabolic pathway was relevant to xenobiotic biodegradation, metabolism, and nucleotide metabolism. In summary, starter feeding before weaning significantly increased the dry matter intake and body weight of yak calves, changed the diversity and abundance of ruminal microbiota, and positively regulated the good development of ruminal morphology and function, providing an important basis for high-quality cultivation and the nutritional level of nutrition of yak calves in the Qinghai Tibet plateau. This study is based on the availability of 16S rRNA sequencing and LC-MS-based metabolomics in clarifying the function of starter feeding in the yak calves.
Collapse
Affiliation(s)
- Yin Wang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Hongze Xia
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Qien Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Deyu Yang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Shujie Liu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- *Correspondence: Shujie Liu,
| | - Zhanhong Cui
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Zhanhong Cui,
| |
Collapse
|
6
|
Mao J, Li Y, Bian Q, Xuan Y, Li J, Wang Z, Feng S, Liu X, Tian Y, Li S. The Bufei Jianpi Formula Improves Mucosal Immune Function by Remodeling Gut Microbiota Through the SCFAs/GPR43/NLRP3 Pathway in Chronic Obstructive Pulmonary Disease Rats. Int J Chron Obstruct Pulmon Dis 2022; 17:1285-1298. [PMID: 35673595 PMCID: PMC9167601 DOI: 10.2147/copd.s359428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jing Mao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ya Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Institute for Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Qingqing Bian
- Institute for Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Yinshuang Xuan
- Institute for Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingmei Li
- Institute for Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Zhikun Wang
- Institute for Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Suxiang Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Suyun Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Institute for Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Correspondence: Suyun Li, Email
| |
Collapse
|
7
|
Wang Y, Sun W, Wu E, Wang K, Chen X, Cui Y, Zhang G, Lv F, Wang Y, Peng X, Si H. Polysaccharides From Abrus cantoniensis Hance Modulate Intestinal Microflora and Improve Intestinal Mucosal Barrier and Liver Oxidative Damage Induced by Heat Stress. Front Vet Sci 2022; 9:868433. [PMID: 35445100 PMCID: PMC9013755 DOI: 10.3389/fvets.2022.868433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effects of polysaccharides from Abrus cantoniensis Hance (ACP) on antioxidant capacity, immune function, the hypothalamus-pituitary-adrenal (HPA) axis balance, the intestinal mucosal barrier, and intestinal microflora in heat stress (HS)-induced heat-injured chickens are rarely reported. The purpose of this study was to investigate the protective effects of ACP on HS-injured chickens by enhancing antioxidant capacity and immune function, repairing the intestinal mucosal barrier, and regulating intestinal microflora. A total of 120 native roosters in Guangxi were randomly divided into 5 groups to evaluate the protective effect of ACP on chickens injured by HS (33 ± 2°C). The results showed that ACP increased the body weight and the immune organ index of heat-injured chickens, regulated the oxidative stress kinase secretion, and restored the antioxidant level of heat-injured birds. ACP significantly inhibited the secretion of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (COR) and reversed the disorder of hormone levels caused by HS. ACP significantly regulated the secretion levels of immune cytokines and restored the immune function of the body. ACP significantly improved the intestinal morphology and increased the expression levels of tight junction proteins, which had a positive effect on protecting intestinal health. The results of high-throughput sequencing of the 16S rRNA gene showed that HS led to an increase in the abundance of harmful bacteria and an abnormal increase in the abundance of intestinal microflora and that ACP restored the HS-induced intestinal microflora imbalance. In conclusion, this study provides a scientific basis for ACP as an antioxidant activity enhancer to reduce liver injury, regulate intestinal microflora, and protect intestinal mucosal damage in chickens.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Enyun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Hepatocellular Cancer and Gut Microbiome: Time to Untie Gordian's Knot. J Gastrointest Cancer 2021; 52:1309-1313. [PMID: 34750696 DOI: 10.1007/s12029-021-00736-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide and the incidence is growing on a global scale. About 90% of cases develop on the cirrhotic liver and the etiology is multifactorial. Increasing number of studies suggest that gut microbiota influences the development and progression of liver diseases, including chronic hepatic inflammation, fibrosis, cirrhosis, and HCC. The key role of gut microbiota in carcinogenesis seems to be associated with genomic instability of host cells and immune dysregulation. Recent clinical studies showed that a stable and healthy microbiota initially could have the ability to resist the emergence of chronic inflammation and, therefore, prevent the induction of carcinogenic cells in various organs such as the esophagus, stomach, colon, and liver. The progression from inflammation to cancer is a stepwise process occurring by the concerted action of several factors such as dysbiosis, increased gut permeability, diet, metabolomic, genetic, and epigenetic changes. In this article, we aimed to review the possible role of gut microbiota in the development, progression, and treatment of HCC.
Collapse
|
9
|
Lin Y, Wu SH, Wang XH, Zhang W, Li BG, Liu WS. Associations of imbalance of intestinal flora with severity of disease, inflammatory factors, adiponectin, and vascular endothelial function of hypertension patients. Kaohsiung J Med Sci 2021; 38:165-173. [PMID: 34672426 DOI: 10.1002/kjm2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
To explore the relationship between the severity of hypertension and the imbalanced intestinal flora, inflammatory factors, adiponectin (ADPN) and vascular endothelial function in primary hypertension patients. According to the grading criteria for hypertension, in total of 60 patients with primary hypertension in our hospital from April to July, 2020 were divided into Grade 1 group (n = 20), Grade 2 group (n = 20), and Grade 3 group (n = 20). The feces of the research subjects were collected to extract the deoxyribonucleic acid (DNA) and detect its composition of intestinal flora. Subsequently, the peripheral blood was collected to determine the changes in inflammatory factors interleukin-2 (IL-2), IL-4, tumor necrosis factor-α (TNF-α) and IL-1β, serum immunoglobulin G (IgG) and IgM, ADPN and vascular endothelial function-related endothelin-1 (ET-1), nitric oxide (NO), vascular endothelial growth factor (VEGF), and intercellular adhesion molecule-1 (ICAM-1). There were no significant differences in the gender, age, and body mass index (BMI), the proportion of smokers, diet habit, probiotics and antihypertensive medication use, and number of diabetic cases among groups (p > 0.05). We found an inverse association between blood pressure measures and microbial diversity, in particular microbial richness (p < 0.05). Among the four major kinds of intestinal flora, the composition of firmicutes (p < 0.05) and bacteroidetes (p < 0.05) showed obvious differences among the three groups, and they had consistent trends with the changes in the abundance of firmicutes and bacteroidetes. Intestinal flora imbalance is closely related to the severity of hypertension, inflammatory factors, ADPN, and vascular endothelial function.
Collapse
Affiliation(s)
- Yang Lin
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Shi-Hui Wu
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Xu-Hong Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Wei Zhang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Bai-Gang Li
- Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.,Department of Emergency, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China
| | - Wen-Shu Liu
- Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.,Department of Emergency, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China
| |
Collapse
|
10
|
Lian X, Zhu Q, Sun L, Cheng Y. Effect of Anesthesia/Surgery on Gut Microbiota and Fecal Metabolites and Their Relationship With Cognitive Dysfunction. Front Syst Neurosci 2021; 15:655695. [PMID: 34483850 PMCID: PMC8416053 DOI: 10.3389/fnsys.2021.655695] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Aims: Post-operative cognitive dysfunction (POCD) is the decline in cognitive function of the central nervous system (CNS) after anesthesia/surgery. The present study explored whether anesthesia/surgery altered gut microbiota and fecal metabolites, examining their associations with risk factors of cognitive dysfunction in aged mice. Methods: Sixteen-month-old C57BL/6 mice underwent abdominal surgery under isoflurane anesthesia to establish an animal model of POCD. The Morris water maze test (MWMT) was used as an indicator of memory after surgery. The effects of anesthesia/surgical interventions on gut microbiota, fecal metabolites, hippocampus, and serum levels of inflammatory factors were examined. Results: The anesthesia/surgery induced more serious POCD behavior, increasing brain interleukin (IL)-6, and IL-1β levels than sham control mice. The relative abundance of bacterial genera Bacteroidales_unclassified, Mucispirillum, and Clostridiales_unclassified declined, whereas that of Escherichia–Shigella, actinomyces, Ruminococcus_gnavus_group, and Lachnospiraceae_FCS020_group were enriched after anesthesia/surgery compared to the baseline controls. Liquid chromatography–mass spectrometry (LC–MS) showed that the metabolites differed between post-anesthesia+surgery (post_A + S) and baseline samples and were associated with the fecal metabolism of tryptophan, kynurenic acid, N-oleoyl γ-aminobutyric acid (GABA), 2-indolecarboxylic acid, and glutamic acid. Furthermore, the differential metabolites were associated with alterations in the abundance of specific bacteria. These results indicate that the POCD intervention may be achieved by targeting specific bacteria associated with neurotransmitter metabolism. Conclusions: A transient cognitive disturbance induced by anesthesia/surgery may be associated with unfavorable alterations in gut microbiota and fecal metabolites, thereby contributing to the POCD development.
Collapse
Affiliation(s)
- Xinrong Lian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianmei Zhu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sun
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yaozhong Cheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Effect of High Fat and Fructo-Oligosaccharide Consumption on Immunoglobulin A in Saliva and Salivary Glands in Rats. Nutrients 2021; 13:nu13041252. [PMID: 33920202 PMCID: PMC8070188 DOI: 10.3390/nu13041252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Consumption of indigestible dietary fiber increases immunoglobulin A (IgA) levels in saliva. The purpose of this study is to clarify the synergistic effect of the intake of a high amount of fats and indigestible dietary fiber on IgA levels in saliva and submandibular glands (SMG). Seven-week-old Wistar rats were fed a low-fat (60 g/kg) fiberless diet, low-fat fructo-oligosaccharide (FOS, 30 g/kg) diet, high-fat (220 g/kg) fiberless diet, or high-fat FOS diet for 70 days. The IgA flow rate of saliva (IgA FR-saliva) was higher in the low-fat FOS group than in the other groups (p < 0.05). Furthermore, the concentration of tyrosine hydroxylase (a marker of sympathetic nerve activation) in the SMG was higher in the low-fat FOS group (p < 0.05) and positively correlated with the IgA FR-saliva (rs = 0.68. p < 0.0001. n = 32) in comparison to that in the other groups. These findings suggest that during low-fat FOS intake, salivary IgA levels may increase through sympathetic nerve activation.
Collapse
|
12
|
Dan Z, Mao X, Liu Q, Guo M, Zhuang Y, Liu Z, Chen K, Chen J, Xu R, Tang J, Qin L, Gu B, Liu K, Su C, Zhang F, Xia Y, Hu Z, Liu X. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 2020; 11:1246-1267. [PMID: 32312186 PMCID: PMC7524265 DOI: 10.1080/19490976.2020.1747329] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder. To enhance the understanding of the gut microbiota structure in ASD children at different ages as well as the relationship between gut microbiota and fecal metabolites, we first used the 16S rRNA sequencing to evaluate the gut microbial population in a cohort of 143 children aged 2-13 years old. We found that the α-diversity of ASD group showed no significant change with age, while the TD group showed increased α-diversity with age, which indicates that the compositional development of the gut microbiota in ASD varies at different ages in ways that are not consistent with TD group. Recent studies have shown that chronic constipation is one of the most commonly obvious gastrointestinal (GI) symptoms along with ASD core symptoms. To further investigate the potential interaction effects between ASD and GI symptoms, the 30 C-ASD and their aged-matched TD were picked out to perform metagenomics analysis. We observed that C-ASD group displayed decreased diversity, depletion of species of Sutterella, Prevotella, and Bacteroides as well as dysregulation of associated metabolism activities, which may involve in the pathogenesis of C-ASD. Consistent with metagenomic analysis, liquid chromatography-mass spectrometry (LC/MS) revealed some of the differential metabolites between C-ASD and TD group were involved in the metabolic network of neurotransmitters including serotonin, dopamine, histidine, and GABA. Furthermore, we found these differences in metabolites were associated with altered abundance of specific bacteria. The study suggested possible future modalities for ASD intervention through targeting the specific bacteria associated with neurotransmitter metabolism.
Collapse
Affiliation(s)
- Zhou Dan
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Qisha Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mengchen Guo
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Kun Chen
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junyu Chen
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junming Tang
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Lianhong Qin
- Children Growth Center of Bo’ai Homestead in Yixing, Yixing, China
| | - Bing Gu
- Medical Technological College of Xuzhou Medical University, Xuzhou, China
| | - Kangjian Liu
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan Su
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen-Microbiology Division, State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,CONTACT Xingyin Liu Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
13
|
Young RR, Jenkins K, Araujo-Perez F, Seed PC, Kelly MS. Long-term stability of microbiome diversity and composition in fecal samples stored in eNAT medium. Microbiologyopen 2020; 9:e1046. [PMID: 32390344 PMCID: PMC7349174 DOI: 10.1002/mbo3.1046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/31/2022] Open
Abstract
Fecal samples collected for microbiome analyses are typically frozen to avoid postcollection changes in microbial composition. eNAT is a guanidine thiocyanate-based medium that stabilizes microbial DNA and allows safe specimen handling and shipping by inactivating microorganisms. We collected fecal samples (n = 50) from children undergoing hematopoietic stem cell transplantation. We divided samples into three aliquots: (a) stored in RNAlater and immediately transferred to -80°C; (b) stored in eNAT medium and immediately transferred to -80°C; and (c) stored in eNAT medium at ambient temperature (~20°C) for 30 days prior to transfer to -80°C. Mean (standard deviation) Shannon diversity and Chao1 indices in sample aliquots were 2.05 (0.62) and 23.8 (16.6), respectively. Comparing samples frozen immediately in RNAlater to samples frozen immediately in eNAT, there were no differences in Shannon diversity (p = .51), Chao1 richness (p = .66), and overall microbiome composition (p = .99). Comparing eNAT samples frozen immediately to samples stored at ambient temperature, we identified no differences in Shannon diversity (p = .65), Chao1 richness (p = .87), and overall microbiome composition (p = .99). Storage of fecal samples in eNAT at ambient temperature for 30 days did not alter microbiome richness, diversity, or composition. eNAT may be a useful medium for fecal microbiome studies, particularly when cold chain storage is unavailable.
Collapse
Affiliation(s)
- Rebecca R Young
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA
| | - Kirsten Jenkins
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA
| | - Felix Araujo-Perez
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick C Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Xu L, Surathu A, Raplee I, Chockalingam A, Stewart S, Walker L, Sacks L, Patel V, Li Z, Rouse R. The effect of antibiotics on the gut microbiome: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genomics 2020; 21:263. [PMID: 32228448 PMCID: PMC7106814 DOI: 10.1186/s12864-020-6665-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background Emergence of antibiotic resistance is a global public health concern. The relationships between antibiotic use, the gut community composition, normal physiology and metabolism, and individual and public health are still being defined. Shifts in composition of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) after antibiotic treatment are not well-understood. Methods This project used next-generation sequencing, custom-built metagenomics pipeline and differential abundance analysis to study the effect of antibiotic monotherapy on resistome and taxonomic composition in the gut of Balb/c mice infected with E. coli via transurethral catheterization to investigate the evolution and emergence of antibiotic resistance. Results There is a longitudinal decrease of gut microbiota diversity after antibiotic treatment. Various ARGs are enriched within the gut microbiota despite an overall reduction of the diversity and total amount of bacteria after antibiotic treatment. Sometimes treatment with a specific class of antibiotics selected for ARGs that resist antibiotics of a completely different class (e.g. treatment of ciprofloxacin or fosfomycin selected for cepA that resists ampicillin). Relative abundance of some MGEs increased substantially after antibiotic treatment (e.g. transposases in the ciprofloxacin group). Conclusions Antibiotic treatment caused a remarkable reduction in diversity of gut bacterial microbiota but enrichment of certain types of ARGs and MGEs. These results demonstrate an emergence of cross-resistance as well as a profound change in the gut resistome following oral treatment of antibiotics.
Collapse
Affiliation(s)
- Lei Xu
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Anil Surathu
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Isaac Raplee
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Ashok Chockalingam
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Sharron Stewart
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Lacey Walker
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Leonard Sacks
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Medical Policy, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Vikram Patel
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Zhihua Li
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
15
|
Abstract
The gut microbiome is the natural intestinal inhabitant that has been recognized recently as a major player in the maintenance of human health and the pathophysiology of many diseases. Those commensals produce metabolites that have various effects on host biological functions. Therefore, alterations in the normal composition or diversity of microbiome have been implicated in various diseases, including liver cirrhosis and nonalcoholic fatty liver disease. Moreover, accumulating evidence suggests that progression of dysbiosis can be associated with worsening of liver disease. Here, we review the possible roles for gut microbiota in the development, progression, and complication of liver disease.
Collapse
Affiliation(s)
- Somaya A M Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Mohammed AA, Jiang S, Jacobs JA, Cheng HW. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress. Poult Sci 2019; 98:4408-4415. [PMID: 31065700 DOI: 10.3382/ps/pez246] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to examine the effect of a dietary synbiotic supplement on the cecal microflora, antioxidant status, and immune response of broiler chickens under heat stress (HS). A total of 360 one-day-old male Ross 708 broiler chicks were randomly distributed among 3 dietary treatments containing a synbiotic (PoultryStar consists of Bifidobacterium animalis, Enterococcus faecium, Lactobacillus reuteri, Pediococcus acidilactici, and fructooligosaccharides) at 0 (control), 0.5 (0.5X), and 1.0 (1.0X) g/kg. Each treatment contained 8 replicates of 15 birds each housed in floor pens. Heat stimulation was at 32°C for 9 h daily from day 15 to 42. Heat stress-induced changes of cecal bacteria were detected using bacteria-specific agars, and spleen protein concentration and mRNA expression of interleukins and antioxidants were examined using ELISA and real-time PCR, respectively. Under the HS condition, synbiotic fed broilers regardless of dose had lower cecal enumerations of Escherichia coli and coliforms, and a lower heterophil/lymphocyte (H/L) ratio (P < 0.05) compared to controls. 1.0X group also had higher cecal enumerations of Bifidobacterium spp. and Lactobacillus spp., spleen glutathione peroxidase (GPx), and plasma nuclear factor erythroid 2-related factor 2 (Nrf-2), and a lower H/L ratio compared to both control and 0.5X groups (P < 0.05). However, there were no treatment effects on the levels of Enterococcus spp., the circulating monocytes, eosinophils, and basophils, Toll like receptor-4 (TLR-4), interleukin-6 (IL-6), interlukin-10 (IL-10), and their mRNA expression, as well as plasma Kelch-like ECH-associated protein 1 (Keap-1) (P > 0.05). These results suggest that the synbiotic could inhibit the negative effects of HS on broiler health through the reduction of cecal pathogens, regulation of stress reactions, and improvement of antioxidant status.
Collapse
Affiliation(s)
- A A Mohammed
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - S Jiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, P. R. China
| | - J A Jacobs
- USDA Agricultural Research Service, West Lafayette, IN 47907, USA
| | - H W Cheng
- USDA Agricultural Research Service, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Santamaria F, Montella S, Stocchero M, Pirillo P, Bozzetto S, Giordano G, Poeta M, Baraldi E. Effects of pidotimod and bifidobacteria mixture on clinical symptoms and urinary metabolomic profile of children with recurrent respiratory infections: a randomized placebo-controlled trial. Pulm Pharmacol Ther 2019; 58:101818. [PMID: 31302340 DOI: 10.1016/j.pupt.2019.101818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/12/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Many preschool children develop recurrent respiratory tract infections (RRI). Strategies to prevent RRI include the use of immunomodulators as pidotimod or probiotics, but there is limited evidence of their efficacy on clinical features or on urine metabolic profile. OBJECTIVE To evaluate whether pidotimod and/or bifidobacteria can reduce RRI morbidity and influence the urine metabolic profile in preschool children. MATERIALS AND METHODS Children aged 3-6 years with RRI were enrolled in a four-arm, exploratory, prospective, randomized, double-blinded, placebo-controlled trial. Patients were randomly assigned to receive pidotimod plus bifidobacteria, pidotimod plus placebo, bifidobacteria plus placebo or double placebo for the first 10 days of each month over 4 consecutive months. Respiratory symptoms and infections were recorded with a daily diary by parents during the study. Metabolomic analyses on urine samples collected before and after treatment were performed. RESULTS Compared to placebo, children receiving pidotimod, alone or with bifidobacteria, had more symptom-free days (69 versus 44, p = 0.003; and 65 versus 44, p = 0.02, respectively) and a lower percentage of days with common cold (17% versus 37%, p = 0.005; and 15% versus 37%, p = 0.004, respectively). The metabolomic analysis showed that children treated with Pidotimod (alone or in combination with bifidobacteria) present, respect to children treated with placebo, a biochemical profile characterized by compounds related to the pathway of steroids hormones, hippuric acid and tryptophan. No significant difference in the metabolic profile was found between children receiving bifidobacteria alone and controls. CONCLUSIONS Preschool children with RRI treated with pidotimod have better clinical outcomes and a different urine metabolomic profile than subjects receiving placebo. Further investigations are needed to clarify the connection between pidotimod and gut microbiome.
Collapse
Affiliation(s)
- Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Silvia Montella
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Matteo Stocchero
- Women's and Children's Health Department, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy.
| | - Paola Pirillo
- Women's and Children's Health Department, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35129, Padova, Italy.
| | - Sara Bozzetto
- Women's and Children's Health Department, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy.
| | - Giuseppe Giordano
- Women's and Children's Health Department, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35129, Padova, Italy.
| | - Marco Poeta
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Eugenio Baraldi
- Women's and Children's Health Department, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35129, Padova, Italy.
| |
Collapse
|
18
|
Manuel CR, Latuga MS, Ashby CR, Reznik SE. Immune tolerance attenuates gut dysbiosis, dysregulated uterine gene expression and high-fat diet potentiated preterm birth in mice. Am J Obstet Gynecol 2019; 220:596.e1-596.e28. [PMID: 30790568 DOI: 10.1016/j.ajog.2019.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Preterm delivery accounts for 85% of perinatal morbidity and mortality. Although the consumption of a high-fat diet leads to exaggerated proinflammatory responses and, in pregnant women, increased rates of spontaneous preterm birth, the underlying mechanisms remain unclear. OBJECTIVE We sought to elucidate the mechanisms by which maternal consumption of a high-fat diet leads to a dysregulated immune response and, subsequently, spontaneous preterm birth. STUDY DESIGN We performed 16S ribosomal RNA sequencing of DNA extracted and amplified from stool samples and compared the gut microbiomes of lipopolysaccharide-induced pregnant mice that were maintained on a high-fat diet compared to a normal control diet. Next, we sequenced the uterine transcriptomes of the mice. To test the effect of dampening of the immune response on the microbiome, transcriptome, and risk of spontaneous preterm birth, we induced immune tolerance with repetitive subclinical doses (0.2 mg/kg/week for 8 weeks) of endotoxin and performed 16S ribosomal RNA and uterine transcriptome sequencing on these immunotolerized mice. RESULTS High-fat diet potentiates lipopolysaccharide-induced preterm birth by affecting the maternal gut microbiome and uterine transcriptome and reduces antioxidant capacity in a murine model. High-fat diet consumption also increases the colonization of the gut by 5 immunogenic bacteria and decreases colonization by Lachnospiraceae_NK4A136_group. Uteri from high-fat diet mice had increased expression of genes that stimulate the inflammatory-oxidative stress axis, autophagy/apoptosis, and smooth muscle contraction. Repetitive endotoxin priming protects high-fat diet dams from spontaneous preterm birth, increases colonization of the gut by Lachnospiraceae_NK4A136_group, decreases levels of immunogenic bacteria in the gut microbiome, and reduces the number of dysregulated genes after high-fat diet consumption from 994 to 74. CONCLUSION High-fat diet-potentiated spontaneous preterm birth is mediated by increased inflammation, oxidative stress, and gut dysbiosis. The induction of immune tolerance via endotoxin priming reverses these effects and protects high-fat diet dams from spontaneous preterm birth. Based on this work, the role of immunomodulation as a novel therapeutic approach to prevent preterm birth among women who consume high-fat diets should be explored.
Collapse
|
19
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
20
|
Anand S, Mande SS. Diet, Microbiota and Gut-Lung Connection. Front Microbiol 2018; 9:2147. [PMID: 30283410 PMCID: PMC6156521 DOI: 10.3389/fmicb.2018.02147] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
The gut microbial community (Gut microbiota) is known to impact metabolic functions as well as immune responses in our body. Diet plays an important role in determining the composition of the gut microbiota. Gut microbes help in assimilating dietary nutrients which are indigestible by humans. The metabolites produced by them not only modulate gastro-intestinal immunity, but also impact distal organs like lung and brain. Micro-aspiration of gut bacteria or movement of sensitized immune cells through lymph or bloodstream can also influence immune response of other organs. Dysbiosis in gut microbiota has been implicated in several lung diseases, including allergy, asthma and cystic fibrosis. The bi-directional cross-talk between gut and lung (termed as Gut-Lung axis) is best exemplified by intestinal disturbances observed in lung diseases. Some of the existing probiotics show beneficial effects on lung health. A deeper understanding of the gut microbiome which comprises of all the genetic material within the gut microbiota and its role in respiratory disorders is likely to help in designing appropriate probiotic cocktails for therapeutic applications.
Collapse
Affiliation(s)
- Swadha Anand
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| |
Collapse
|