1
|
Memarpour M, Jafari S, Rafiee A, Alizadeh M, Vossoughi M. Protective effect of various toothpastes and mouthwashes against erosive and abrasive challenge on eroded dentin: an in vitro study. Sci Rep 2024; 14:9387. [PMID: 38653765 DOI: 10.1038/s41598-024-59631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
The study aimed to compare various toothpastes and mouthwashes on permanent tooth dentin after erosive and abrasive challenges. 130 sound premolars dentin were randomly submitted to an initial erosive challenge and a cycle of erosive and abrasive challenges for five days. The five experimental groups (n = 26) were: (1) Control group (artificial saliva), (2) Elmex erosion protection toothpaste and mouthwash, (3) Vitis anticaries biorepair toothpaste and mouthwash, (4) Oral B Pro-expert toothpaste and Oral B Fluorinse mouthwash, and (5) MI Paste ONE toothpaste and Caphosol mouthwash. Microhardness, surface roughness values, and the topographical characteristics of the dentin surface were assessed. The highest percentage of recovered dentin microhardness (%RDMH) value was observed in groups 2 and 4, followed by groups 5 and 3, respectively. The %RDMH values in groups 2 and 4 did not demonstrate a significant difference (p = 0.855). The highest percentage of improvement in surface roughness was recorded in groups 2 and 4, with no significant differences (p = 0.989). The atomic force microscopy (AFM) findings were consistent with the surface roughness data. The best recovery of dentin microhardness and roughness were measured with the Elmex and Oral B toothpaste and mouthwash, followed by MI Paste ONE toothpaste and Caphosol mouthwash and Vitis anticaries biorepair toothpaste and mouthwash.
Collapse
Affiliation(s)
- Mahtab Memarpour
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Jafari
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azade Rafiee
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Vossoughi
- Mental Health Research Center, Psychological Health Research Institute (PHPRI), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chen JM, Cheng YL, Yang MH, Su C, Yu H. Enhancing the inhibition of dental erosion and abrasion with quercetin-encapsulated hollow mesoporous silica nanocomposites. Front Bioeng Biotechnol 2024; 12:1343329. [PMID: 38405377 PMCID: PMC10885352 DOI: 10.3389/fbioe.2024.1343329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction: Dental erosion and abrasion pose significant clinical challenges, often leading to exposed dentinal tubules and dentine demineralization. The aim of this study was to analyse the efficacy of quercetin-encapsulated hollow mesoporous silica nanocomposites (Q@HMSNs) on the prevention of dentine erosion and abrasion. Method: Q@HMSNs were synthesized, characterized, and evaluated for their biocompatibility. A total of 130 dentine specimens (2 mm × 2 mm × 2 mm) were prepared and randomly distributed into 5 treatment groups (n = 26): DW (deionized water, negative control), NaF (12.3 mg/mL sodium fluoride, positive control), Q (300 μg/mL quercetin), HMSN (5.0 mg/mL HMSNs), and Q@HMSN (5.0 mg/mL Q@HMSNs). All groups were submitted to in vitro erosive (4 cycles/d) and abrasive (2 cycles/d) challenges for 7 days. The specimens in the DW, NaF, and Q groups were immersed in the respective solutions for 2 min, while treatment was performed for 30 s in the HMSN and Q@HMSN groups. Subsequently, the specimens were subjected to additional daily erosion/abrasion cycles for another 7 days. The effects of the materials on dentinal tubule occlusion and demineralized organic matrix (DOM) preservation were examined by scanning electron microscopy (SEM). The penetration depth of rhodamine B fluorescein into the etched dentine was assessed using confocal laser scanning microscopy (CLSM). The erosive dentine loss (EDL) and release of type I collagen telopeptide (ICTP) were measured. The data were analysed by one-way analysis of variance (ANOVA) with post hoc Tukey's test (α = 0.05). Results: Q@HMSNs were successfully synthesized and showed minimal toxicity to human dental pulp stem cells (HDPSCs) and gingival fibroblasts (HGFs). Q@HMSNs effectively occluded the dentinal tubules, resulting in a thicker DOM in the Q@HMSN group. The CLSM images showed more superficial penetration in the HMSN and Q@HMSN groups than in the quercetin, NaF, and DW groups. The Q@HMSN group exhibited a significantly lower EDL and reduced ICTP levels compared to the other groups (p < 0.05). Conclusion: Q@HMSNs hold promise for inhibiting dentine erosion and abrasion by promoting tubule occlusion and DOM preservation.
Collapse
Affiliation(s)
- Jia-Min Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yi-Ling Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Meng-Hui Yang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chen Su
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University Zurich, Zurich, Switzerland
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Li Z, Zeng Y, Ren Q, Ding L, Han S, Hu D, Lu Z, Wang L, Zhang Y, Zhang L. Mineralization promotion and protection effect of carboxymethyl chitosan biomodification in biomimetic mineralization. Int J Biol Macromol 2023; 234:123720. [PMID: 36805508 DOI: 10.1016/j.ijbiomac.2023.123720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Biomimetic mineralization emphasizes reversing the process of dental caries through bio-inspired strategies, in which mineralization promotion and collagen protection are equally important. In this study, carboxymethyl chitosan (CMC) was deemed as an analog of glycosaminoglycan for biomimetic modification of collagen, both of the mineralization facilitation and collagen protection effect were evaluated. Experiments were carried out simultaneously on two-dimensional monolayer reconstituted collagen model, three-dimensional reconstituted collagen model and demineralized dentin model. In three models, CMC was successfully cross-linked onto collagen utilizing biocompatible 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy sulfosuccinimide sodium salt to achieve biomodification. Results showed that CMC biomodification increased collagen's hydrophilicity, calcium absorption capacity and thermal degradation resistance. In demineralized dentin model, the activity of endogenous matrix metalloproteinases was significantly inhibited by CMC biomodification. Furthermore, CMC biomodification significantly improved cross-linking and intrafibrillar mineralization of collagen, especially in the two-dimensional monolayer reconstituted collagen model. This study provided a biomimetic mineralization strategy with comprehensive consideration of collagen protection, and enriched the application of chitosan-based materials in dentistry.
Collapse
Affiliation(s)
- Zhongcheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhao Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Longjiang Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Die Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ziqian Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoyao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Reis RGD, Tedesco AC, Curylofo-Zotti FA, Cortez TV, Borges HS, Souza-Gabriel AE, Corona SAM. Longitudinal analyses of composite resin restoration on erosive lesions. BRAZILIAN JOURNAL OF ORAL SCIENCES 2022. [DOI: 10.20396/bjos.v22i00.8666839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: To evaluate the influence of the biomodification of erosive lesions with a chitosan nanoformulation containing green tea (NanoCsQ) on the clinical performance of a composite resin. Methods: The study was performed in a split-mouth, randomized and double-blinded model with 20 patients with 40 erosive lesions. The patient’s teeth were randomized into two groups (n=20) according to the surface treatment: 1) Without biomodification (control), and 2) Biomodification with NanoCsQ solution (experimental). The lesions were restored with adhesive (Tetric N-bond, Ivoclar) and composite resin (IPS Empress Direct, Ivoclar). The restorations were polished and 7 days (baseline), 6 months, and 12 months later were evaluated according to the United States Public Health Service (USPHS) modified criteria, using clinical exam and photographics. Data were analyzed by Friedman’s and Wilcoxon signed-rank tests. Results: No significant differences were found between the control and experimental groups (p=0.423), and also among the follow-up periods (baseline, six months, and 12 months) (p=0.50). Regarding the retention criteria, 90% of the restoration had an alpha score in the control group. Only 10% of the restorations without biomodification (control) had a score charlie at the 12-month follow-up. None of the patients reported post-operatory sensitivity. Conclusion: The NanoCsQ solution did not negatively affect the performance of the composite resin restorations after 12 months.
Collapse
|
5
|
Augusto MG, Scaramucci T, Campos TMB, Aoki IV, Schlueter N, Borges AB. Film-Forming Polymers for Tooth Erosion Prevention. Polymers (Basel) 2022; 14:polym14194225. [PMID: 36236172 PMCID: PMC9573524 DOI: 10.3390/polym14194225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Different agents have been proposed to prevent the progression of acid induced dental substance losses, which are called erosive tooth wear (ETW), such as fluorides, calcium, and phosphate-based products; however, there is a need for a further increase in efficacy. Recently, the ability of polymers to interact with the tooth surface, forming acid resistant films, has come into the focus of research; nevertheless, there is still the need for a better understanding of their mode of action. Thus, this article provides an overview of the chemical structure of polymers, their mode of action, as well as the effect of their incorporation into oral care products, acid beverages, and antacid formulations, targeting the prevention of ETW. Recent evidence indicates that this may be a promising approach, however, additional studies are needed to confirm their efficacy under more relevant clinical conditions that consider salivary parameters such as flow rate, composition, and clearance. The standardization of methodological procedures such as acid challenge, treatment duration, and combination with fluorides is necessary to allow further comparisons between studies. In conclusion, film-forming polymers may be a promising cost-effective approach to prevent and control erosive demineralization of the dental hard tissue.
Collapse
Affiliation(s)
- Marina Gullo Augusto
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University-UNESP, São José dos Campos 12245-000, Brazil
- School of Dentistry, Centro Universitário de Cascavel–UNIVEL, Av. Tito Muffato, 317-Santa Cruz, Cascavel 85806-080, Brazil
| | - Tais Scaramucci
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo-USP, São Paulo 12245-000, Brazil
| | | | - Idalina Vieira Aoki
- Department of Chemical Engineering, Polytechnic School, University of São Paulo-USP, São Paulo 12245-000, Brazil
| | - Nadine Schlueter
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, 30625 Hannover, Germany
| | - Alessandra Bühler Borges
- Institute of Science and Technology, Department of Restorative Dentistry, São Paulo State University-UNESP, São José dos Campos 12245-000, Brazil
- Correspondence: ; Tel.: +55-12-3947-9374
| |
Collapse
|
6
|
Topical Agents for Nonrestorative Management of Dental Erosion: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10081413. [PMID: 36011070 PMCID: PMC9408325 DOI: 10.3390/healthcare10081413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
A nonrestorative approach to the management of dental erosion is the foremost option: controlling dental erosion. The objectives of this study are to provide an overview and to summarise the effects and properties of topical anti-erosive agents as a nonrestorative treatment of dental erosion. A literature search was conducted on five databases of peer-reviewed literature—Cochrane Library, EMBASE, PubMed, Scopus and Web of Science—to recruit articles published between 1 January 2000 and 31 December 2021. The literature search identified 812 studies; 95 studies were included. Topical anti-erosive agents can be broadly categorised as fluorides, calcium phosphate-based agents, organic compounds and other anti-erosive agents. In the presence of saliva, fluorides promote the formation of fluorapatite on teeth through remineralisation. Calcium phosphate-based agents supply the necessary minerals that are lost due to the acid challenge of erosion. Some organic compounds and other anti-erosive agents prevent or control dental erosion by forming a protective layer on the tooth surface, by modifying salivary pellicle or by inhibiting the proteolytic activity of dentine collagenases. Topical anti-erosive agents are promising in managing dental erosion. However, current evidence shows inconsistent or limited results for supporting the use of these agents in clinical settings.
Collapse
|
7
|
Ziotti IR, Paschoini VL, Corona SAM, Souza-Gabriel AE. Chitosan-induced biomodification on demineralized dentin to improve the adhesive interface. Restor Dent Endod 2022; 47:e28. [PMID: 36090512 PMCID: PMC9436653 DOI: 10.5395/rde.2022.47.e28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Metalloproteinase-inhibiting agents, such as chitosan, can prevent collagen degradation in demineralized dental substrates, thereby improving the adhesive interface. This study evaluated the bond strength (BS) and chemical and morphological characterization of the adhesive interface after applying chitosan solution to demineralized dentin. Materials and Methods The 80 third molars were selected. Forty teeth underwent caries induction using the pH cycling method. The teeth were divided according to the treatment: distilled water (control) and 2.5% chitosan solution. The surfaces were restored using adhesive and composite resins. Half of the specimens in each group were aged, and the other half underwent immediate analyses. The teeth were sectioned and underwent the microtensile bond strength test (µTBS), and chemical and morphological analyses using energy-dispersive spectroscopy and scanning electron microscopy, respectively. Data analysis was performed using 3-way analysis of variance. Results For µTBS, sound dentin was superior to demineralized dentin (p < 0.001), chitosan-treated specimens had higher bond strength than the untreated ones (p < 0.001), and those that underwent immediate analysis had higher values than the aged specimens (p = 0.019). No significant differences were observed in the chemical or morphological compositions. Conclusions Chitosan treatment improved bond strength both immediately and after aging, even in demineralized dentin.
Collapse
Affiliation(s)
- Isabella Rodrigues Ziotti
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vitória Leite Paschoini
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silmara Aparecida Milori Corona
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Evangelista Souza-Gabriel
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Nahórny S, de Oliveira IR, Soares LES. Biomineralization induced by chitosan and collagen-based materials with fluoride for dentin coverage: Chemical and morphological analysis. Microsc Res Tech 2021; 85:1089-1100. [PMID: 34741774 DOI: 10.1002/jemt.23978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/10/2022]
Abstract
The prevention and treatment of erosive tooth wear are becoming increasingly important due to its increasing prevalence. The use of natural solutions to modify dental surfaces has become an area of research. Organic materials such as chitosan and hydrolyzed collagen may be a promising option to treat dentin. This in vitro study aimed to evaluate the influence of chitosan or hydrolyzed collagen, alone or combined with acidulated phosphate fluoride (APF) gel, on the composition and morphology of dentin after erosion. Bovine dentin samples were prepared (n = 84) and treated with artificial saliva (AS, negative control); APF gel (F, positive control); chitosan solution (Chi); hydrolyzed collagen solution (Col); fluoride/chitosan composition (F_Chi); and fluoride/hydrolyzed collagen composition (F_Col). Erosive cycles (six cycles of immersion in orange juice for 1 min, followed by immersion in AS for 1 hr) were performed. The materials were characterized by their morphology, composition, and particle size distribution. Micro-energy dispersive X-ray fluorescence spectroscopy and scanning electron were used to evaluate the dentin's inorganic chemical composition and morphology. The F_Col and F groups had a reduction in calcium loss by 17 and 26%, respectively (p < .001). Both of these groups still had a covering layer of agglomerates at the dentin surface after the erosive cycles. The fluoridated chitosan or collagen solutions improved the dentin resistance to erosion as a novel hybrid-fluoride-based material approach to provide surface protection from erosion.
Collapse
Affiliation(s)
- Sidnei Nahórny
- Laboratorio de Odontologia e Materiais Aplicados, Instituto de Pesquisa e Desenvolvimento - IP8D, Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil.,Laboratorio de Ceramicas Avancadas, Instituto de Pesquisa e Desenvolvimento (IP8D), Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Ivone Regina de Oliveira
- Laboratorio de Ceramicas Avancadas, Instituto de Pesquisa e Desenvolvimento (IP8D), Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Luís Eduardo Silva Soares
- Laboratorio de Odontologia e Materiais Aplicados, Instituto de Pesquisa e Desenvolvimento - IP8D, Universidade do Vale do Paraiba, Av. Shishima Hifumi, Sao Jose dos Campos, Sao Paulo, Brazil
| |
Collapse
|
9
|
Santos LA, Martini T, Câmara JVF, Reis FN, Ortiz ADC, Camiloti GD, Levy FM, Shibao PYT, Honorio HM, Henrique-Silva F, Pieretti JC, Seabra AB, Cardoso CDAB, Buzalaf MAR. Solutions and Gels Containing a Sugarcane-Derived Cystatin (CaneCPI-5) Reduce Enamel and Dentin Erosion in vitro. Caries Res 2021; 55:594-602. [PMID: 34670214 DOI: 10.1159/000520261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into 2 groups (n = 135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/mL CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2-h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90 s, artificial saliva/2 h, and artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey's test (p < 0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/mL gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.
Collapse
Affiliation(s)
| | - Tatiana Martini
- Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | | | | | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| | | | | |
Collapse
|
10
|
de Souza JC, Tedesco AC, Takahashi LAU, Curylofo-Zotti FA, Souza-Gabriel AE, Corona SAM. Influence of nanoparticulated chitosan on the biomodification of eroded dentin: clinical and photographic longitudinal analysis of restorations. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:11. [PMID: 33471208 PMCID: PMC7817594 DOI: 10.1007/s10856-020-06487-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/18/2020] [Indexed: 05/09/2023]
Abstract
To evaluate the influence of the pre-treatment with 2.5% nanoparticulate chitosan (2.5% NanoChi) solution on eroded dentin before the restorative dental treatment. The sample consisted of 22 patients (age between 33 and 52 years) with shallow or medium erosion lesions located in two homologous teeth. The teeth were randomly assigned according to dentin treatment: with 2.5% NanoChi and without with chitosan (control). The NanoChi were applied immediately after acid etching. The teeth were restored with Single Bond Universal (3 M) and Charisma resin (Kulzer). Analyzes were done using modified USPHS (retention, secondary caries, marginal adaptation, and sensitivity) and photographic (color, marginal pigmentation, and anatomical form) criteria at 7 days (baseline) and 1 year. Population demographics, Kaplan-Meier estimates and log-rank test (Mantel-Cox) were calculated for 1 year (α = 0.05). No significant difference was found in the survival rates between groups (p > 0.05) at 7 days and 1 year after treatment. After 7 days, 100% of the restorations were scored as Alpha on all criteria. After 1 year, 91% of the NanoChi restorations were scored as Alpha and 9% as Charlie for the retention, marginal adaptation, and anatomical form criteria, while 86% of the control restorations (without NanoChi) received the Alpha score and 14% received the Charlie. Secondary caries, sensitivity, color, and marginal pigmentation criteria were scored as Alpha in 100% of the restorations. The biomodification of eroded dentin with 2.5% NanoChi did not influence the survival of the restorations after 1 year. The application of 2.5% NanoChi on eroded dentin did not increase failures of resin restorations after 1 year and it can be used as a pre-treatment solution.
Collapse
Affiliation(s)
- José Caetano de Souza
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Antônio Cláudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Luandra Aparecida Unten Takahashi
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Fabiana Almeida Curylofo-Zotti
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Aline Evangelista Souza-Gabriel
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Silmara Aparecida Milori Corona
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, 14040-904, Brazil.
| |
Collapse
|
11
|
Sarialioglu Gungor A, Donmez N. Dentin erosion preventive effects of various plant extracts: An in vitro atomic force microscopy, scanning electron microscopy, and nanoindentation study. Microsc Res Tech 2020; 84:1042-1052. [PMID: 33264465 DOI: 10.1002/jemt.23665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023]
Abstract
The overall consumption of acidic beverages has become more common, making the prevention and treatment of dental erosion an important consideration. The aim of this in vitro study was to evaluate the effect of various plant extracts in preventing dentin erosion. Seven experimental groups (fluoride-free water, fluoride-containing mouthwash [Colgate Plax], green tea, rosehip, clove, pomegranate, and grape seed) were formed, each consisting of 20 bovine dentin samples. The specimens were exposed daily to demineralization and remineralization cycles three times per day over 5 days through a 5-min plant extract application before each erosive episode. Surface roughness, nanohardness values, and morphological changes on dentin surfaces were examined using atomic force microscopy (AFM), nanoindentation, and scanning electron microscopy (SEM). The data were subjected to Kruskal-Wallis and Friedman tests (p < .05). There were statistically significant differences between the groups in terms of nanohardness values (p < .05), except for the pomegranate and grape seed groups. The highest nanohardness value was observed in the clove group (1.24 ± 0.34 GPa), whereas the lowest nanohardness value was noted in the grape seed group (0.20 ± 0.04 GPa). The nanohardness values of positive and negative control groups after erosion cycles were statistically higher than the initial nanohardness values (p < .05).There was no statistically significant difference between the groups in surface roughness values (p > .05). Macromolecular deposits were observed both in the SEM and AFM images of the pomegranate, Colgate, and rosehip groups. It can be concluded that the clove extract group is more successful in preventing dentin erosion than the other groups. Green tea is also effective in preventing dentin erosion, similar to clove extract. The application of plant extracts may be a new treatment strategy in preventing dentin erosion. Plant extracts may also reduce the severity of existing dentin erosion. Clove and green tea extracts may present novel natural therapy potential by inhibiting dentin erosion.
Collapse
Affiliation(s)
- Ayca Sarialioglu Gungor
- Department of Restorative Dentistry, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Nazmiye Donmez
- Department of Restorative Dentistry, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
12
|
Souza BM, Machado PF, Vecchia LR, Magalhães AC. Effect of chitosan solutions with or without fluoride on the protection against dentin erosion in vitro. Eur J Oral Sci 2020; 128:495-500. [PMID: 33058288 DOI: 10.1111/eos.12740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
The aim of this study was to assess the protective effect of experimental solutions containing chitosan at different viscosities with or without fluoride (TiF4 /NaF) on dentin loss in vitro. Bovine dentin samples (n = 15) were prepared and allocated to one of the following treatments: (i) 0.5% chitosan (500 mPas); (ii) 0.5% chitosan (2,000 mPas); (iii) 0.042% NaF and 0.049% TiF4 ; (iv) as (iii) with addition of 0.5% chitosan (500 mPas); (v) as (iii) with addition of 0.5% chitosan (2,000 mPas); (vi) commercial solution with SnCl2 /AmF/NaF (positive control); or (vii) deionized water (negative control). The samples were submitted to pH cycling for 7 d (0.1% citric acid, 4 × 90 s d-1 ). The treatment was applied once a day for 30 s. The dentin loss was quantified using a contact profilometer. Three samples per group were evaluated using scanning electron microscopy. The dentin loss (μm) was submitted to anova and Tukey's test for differences between treatments. Among the treatments tested, only chitosan 500 mPas was able to statistically significantly reduce the dentin loss compared to the negative control, being similar to the positive control. TiF4 /NaF, whether with or without chitosan, had no protective effect. Chitosan 500 mPas and SnCl2 /AmF/NaF solutions have comparable protective effect against dentin erosion in vitro.
Collapse
Affiliation(s)
- Beatriz M Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paula F Machado
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Luiz Rp Vecchia
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana C Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
13
|
Roque-Torres GD, Kwon SR, Oyoyo U, Li Y. Measurement of erosion depth using microcomputed tomography and light microscopy. Microsc Res Tech 2020; 83:1450-1455. [PMID: 32681812 DOI: 10.1002/jemt.23537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/17/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Tooth-erosion is the surface loss of dental hard tissue mostly associated with an acid attack. The aim was to compare dentin and enamel erosion depth measurements using micro-computed tomography (microCT) and light microscopy (LM). Enamel/dentin blocks were prepared from caries-free human molar-teeth (N = 12). Teeth were sectioned to a rectangular shape of 4 × 4 × 6 mm. Specimens were treated with water (NC) or 1.0% citric-acid solution (PC). After treatment, specimens were scanned with micro-computed tomography. On completion, specimens were sectioned and observed under a light-microscope. Lesion depth was observed with 10× magnification and images transferred to Simpleware software. Vertical distance from lesion surface to bottom was measured. Pearson correlation test was used to evaluate correlation and Wilcoxon Signed Rank test to evaluate differences in the two-analysis methods. Mean enamel erosion depth was 0.63 and 38.38 μm (microCT) and 0.54 and 39.43 μm (LM) for NC and PC, respectively. Dentin erosion depth was 0.72 and 48.05 μm (microCT) and 0.56 and 49.92 μm (LM) for NC and PC, respectively. There was a significant correlation between the two-analysis methods (r = 0.998; p < .001). No statistically significant difference in results were obtained when microCT and LM were compared (p = .584). This results obtained from the current study suggested that erosion depth measurements made using microCT and LM yielded comparable results. The microCT method is preferred if the conservation of specimens is desired.
Collapse
Affiliation(s)
- Gina Delia Roque-Torres
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - So Ran Kwon
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Udochukwu Oyoyo
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Yiming Li
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
14
|
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar Drugs 2019; 17:E369. [PMID: 31234361 PMCID: PMC6627199 DOI: 10.3390/md17060369] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Huge amounts of chitin and chitosans can be found in the biosphere as important constituents of the exoskeleton of many organisms and as waste by worldwide seafood companies. Presently, politicians, environmentalists, and industrialists encourage the use of these marine polysaccharides as a renewable source developed by alternative eco-friendly processes, especially in the production of regular cosmetics. The aim of this review is to outline the physicochemical and biological properties and the different bioextraction methods of chitin and chitosan sources, focusing on enzymatic deproteinization, bacteria fermentation, and enzymatic deacetylation methods. Thanks to their biodegradability, non-toxicity, biocompatibility, and bioactivity, the applications of these marine polymers are widely used in the contemporary manufacturing of biomedical and pharmaceutical products. In the end, advanced cosmetics based on chitin and chitosans are presented, analyzing different therapeutic aspects regarding skin, hair, nail, and oral care. The innovative formulations described can be considered excellent candidates for the prevention and treatment of several diseases associated with different body anatomical sectors.
Collapse
Affiliation(s)
| | | | | | - Siyuan Deng
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
15
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Effect of sucralfate against hydrochloric acid-induced dental erosion. Clin Oral Investig 2018; 23:2365-2370. [PMID: 30302612 DOI: 10.1007/s00784-018-2694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Devising effective measures for the prevention of hydrochloric acid (HCl)-induced erosion is of great significance. This is even more important in dentine, in which products have limited diffusion. Therefore, agents that can bind to proteins forming an acid-resistant gel-like coat, such as sucralfate, may stand out as a promising alternative. This study investigated the protective effect of sucralfate suspensions against HCl-induced dental erosion. MATERIALS AND METHODS In the first experiment, hydroxyapatite (HAp) crystals were pre-treated with a commercial sucralfate suspension (CoSS, pH 5.9), a stannous-containing sodium fluoride solution (NaF/SnCl2 pH 4.5), two prepared sucralfate suspensions (PrSS, pH 5.9 and 4.5), or deionized water (DI, control). HAp dissolution was measured using a pH-stat system. In a subsequent experiment, embedded/polished enamel and root dentine slabs were allocated into five groups to be treated with one of the tested substances prior to and during erosion-remineralization cycles (HCl-2 min + artificial saliva 60 min, two times per day, 5 days). Surface loss was assessed profilometrically. Data were analyzed by ANOVA and Tukey's tests. RESULTS HAp dissolution was as follows: NaF/SnCl2 < CoSS < PrSS/pH 4.5, while PrSS/pH 5.9 = DI and both did not differ from CoSS and PrSS/pH 4.5. In enamel, surface loss did not differ between CoSS and PrSS/pH 4.5, with both having lower surface loss than PrSS/pH 5.9 and DI and NaF/SnCl2 differing only from DI. In root dentine, surface loss was as follows: CoSS < PrSS/pH 5.9 < (NaF/SnCl2 = DI), while PrSS/pH 4.5 = CoSS = PrSS/pH 5.9. CONCLUSION Sucralfate suspension provided anti-erosive protection to HCl-induced erosion. CLINICAL RELEVANCE Sucralfate may protect teeth against erosion caused by gastric acid.
Collapse
|