1
|
Tian H, Tian F, Ma D, Xiao B, Ding Z, Zhai X, Song L, Ma C. Priming and Combined Strategies for the Application of Mesenchymal Stem Cells in Ischemic Stroke: A Promising Approach. Mol Neurobiol 2024; 61:7127-7150. [PMID: 38366307 DOI: 10.1007/s12035-024-04012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) administration and mechanical thrombectomy are the main treatments but have a narrow time window. Mesenchymal stem cells (MSCs), which are easily scalable in vitro and lack ethical concerns, possess the potential to differentiate into various types of cells and secrete a great number of growth factors for neuroprotection and regeneration. Moreover, MSCs have low immunogenicity and tumorigenic properties, showing safety and preliminary efficacy both in preclinical studies and clinical trials of IS. However, it is unlikely that MSC treatment alone will be sufficient to maximize recovery due to the low survival rate of transplanted cells and various mechanisms of ischemic brain damage in the different stages of IS. Preconditioning was used to facilitate the homing, survival, and secretion ability of the grafted MSCs in the ischemic region, while combination therapies are alternatives that can maximize the treatment effects, focusing on multiple therapeutic targets to promote stroke recovery. In this case, the combination therapy can yield a synergistic effect. In this review, we summarize the type of MSCs, preconditioning methods, and combined strategies as well as their therapeutic mechanism in the treatment of IS to accelerate the transformation from basic research to clinical application.
Collapse
Affiliation(s)
- Hao Tian
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Dong Ma
- Department of Neurosurgery, The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong, 037003, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoyan Zhai
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China
- School of Basic Medicine of Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Lijuan Song
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Cungen Ma
- Experimental Management Center, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, No. 121, University Street, Higher Education Park, Jinzhong, 030619, China.
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| |
Collapse
|
2
|
Chen DH, Huang JR, Su SL, Chen Q, Wu BY. Therapeutic potential of mesenchymal stem cells for cerebral small vessel disease. Regen Ther 2024; 25:377-386. [PMID: 38414558 PMCID: PMC10899004 DOI: 10.1016/j.reth.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 02/29/2024] Open
Abstract
Cerebral small vessel disease (CSVD), as the most common, chronic and progressive vascular disease on the brain, is a serious neurological disease, whose pathogenesis remains unclear. The disease is a leading cause of stroke and vascular cognitive impairment and dementia, and contributes to about 20% of strokes, including 25% of ischemic strokes and 45% of dementias. Undoubtedly, the high incidence and poor prognosis of CSVD have brought a heavy economic and medical burden to society. The present treatment of CSVD focuses on the management of vascular risk factors. Although vascular risk factors may be important causes or accelerators of CSVD and should always be treated in accordance with best clinical practice, controlling risk factors alone could not curb the progression of CSVD brain injury. Therefore, developing safer and more effective treatment strategies for CSVD is urgently needed. Recently, mesenchymal stem cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of central nervous system disease, given their paracrine properties and immunoregulatory. Herein, we discussed the therapeutic potential of MSCs for CSVD, aiming to enable clinicians and researchers to understand of recent progress and future directions in the field.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Jia-Rong Huang
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Shuo-Lei Su
- Shaoguan University, No.288 University Road, Xinshaozhen Zhenjiang District, Shaoguan, 512005, China
| | - Qiong Chen
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Bing-Yi Wu
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
3
|
Nagase T, Kin K, Yasuhara T. Targeting Neurogenesis in Seeking Novel Treatments for Ischemic Stroke. Biomedicines 2023; 11:2773. [PMID: 37893146 PMCID: PMC10604112 DOI: 10.3390/biomedicines11102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The interruption of cerebral blood flow leads to ischemic cell death and results in ischemic stroke. Although ischemic stroke is one of the most important causes of long-term disability and mortality, limited treatments are available for functional recovery. Therefore, extensive research has been conducted to identify novel treatments. Neurogenesis is regarded as a fundamental mechanism of neural plasticity. Therefore, therapeutic strategies targeting neurogenesis are thought to be promising. Basic research has found that therapeutic intervention including cell therapy, rehabilitation, and pharmacotherapy increased neurogenesis and was accompanied by functional recovery after ischemic stroke. In this review, we consolidated the current knowledge of the relationship between neurogenesis and treatment for ischemic stroke. It revealed that many treatments for ischemic stroke, including clinical and preclinical ones, have enhanced brain repair and functional recovery post-stroke along with neurogenesis. However, the intricate mechanisms of neurogenesis and its impact on stroke recovery remain areas of extensive research, with numerous factors and pathways involved. Understanding neurogenesis will lead to more effective stroke treatments, benefiting not only stroke patients but also those with other neurological disorders. Further research is essential to bridge the gap between preclinical discoveries and clinical implementation.
Collapse
Affiliation(s)
- Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
5
|
Yabuno S, Yasuhara T, Nagase T, Kawauchi S, Sugahara C, Okazaki Y, Hosomoto K, Sasada S, Sasaki T, Tajiri N, Borlongan CV, Date I. Synergistic therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) and voluntary exercise with running wheel in a rat model of ischemic stroke. Stem Cell Res Ther 2023; 14:10. [PMID: 36691091 PMCID: PMC9872315 DOI: 10.1186/s13287-023-03236-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) transplantation therapy is a promising therapy for stroke patients. In parallel, rehabilitation with physical exercise could ameliorate stroke-induced neurological impairment. In this study, we aimed to clarify whether combination therapy of intracerebral transplantation of human modified bone marrow-derived MSCs, SB623 cells, and voluntary exercise with running wheel (RW) could exert synergistic therapeutic effects on a rat model of ischemic stroke. METHODS Wistar rats received right transient middle cerebral artery occlusion (MCAO). Voluntary exercise (Ex) groups were trained in a cage with RW from day 7 before MCAO. SB623 cells (4.0 × 105 cells/5 μl) were stereotactically injected into the right striatum at day 1 after MCAO. Behavioral tests were performed at day 1, 7, and 14 after MCAO using the modified Neurological Severity Score (mNSS) and cylinder test. Rats were euthanized at day 15 after MCAO for mRNA level evaluation of ischemic infarct area, endogenous neurogenesis, angiogenesis, and expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). The rats were randomly assigned to one of the four groups: vehicle, Ex, SB623, and SB623 + Ex groups. RESULTS SB623 + Ex group achieved significant neurological recovery in mNSS compared to the vehicle group (p < 0.05). The cerebral infarct area of SB623 + Ex group was significantly decreased compared to those in all other groups (p < 0.05). The number of BrdU/Doublecortin (Dcx) double-positive cells in the subventricular zone (SVZ) and the dentate gyrus (DG), the laminin-positive area in the ischemic boundary zone (IBZ), and the mRNA level of BDNF and VEGF in SB623 + Ex group were significantly increased compared to those in all other groups (p < 0.05). CONCLUSIONS This study suggests that combination therapy of intracerebral transplantation SB623 cells and voluntary exercise with RW achieves robust neurological recovery and synergistically promotes endogenous neurogenesis and angiogenesis after cerebral ischemia, possibly through a mechanism involving the up-regulation of BDNF and VEGF.
Collapse
Affiliation(s)
- Satoru Yabuno
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Chiaki Sugahara
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Isao Date
- Department of Neurological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558 Japan
| |
Collapse
|
6
|
Sikder P, Nagaraju P, Naganaboyina HPS. 3D-Printed Piezoelectric Porous Bioactive Scaffolds and Clinical Ultrasonic Stimulation Can Help in Enhanced Bone Regeneration. Bioengineering (Basel) 2022; 9:679. [PMID: 36421081 PMCID: PMC9687159 DOI: 10.3390/bioengineering9110679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/01/2023] Open
Abstract
This paper presents a comprehensive effort to develop and analyze first-of-its-kind design-specific and bioactive piezoelectric scaffolds for treating orthopedic defects. The study has three major highlights. First, this is one of the first studies that utilize extrusion-based 3D printing to develop design-specific macroporous piezoelectric scaffolds for treating bone defects. The scaffolds with controlled pore size and architecture were synthesized based on unique composite formulations containing polycaprolactone (PCL) and micron-sized barium titanate (BaTiO3) particles. Second, the bioactive PCL-BaTiO3 piezoelectric composite formulations were explicitly developed in the form of uniform diameter filaments, which served as feedstock material for the fused filament fabrication (FFF)-based 3D printing. A combined method comprising solvent casting and extrusion (melt-blending) was designed and deemed suitable to develop the high-quality PCL-BaTiO3 bioactive composite filaments for 3D printing. Third, clinical ultrasonic stimulation (US) was used to stimulate the piezoelectric effect, i.e., create stress on the PCL-BaTiO3 scaffolds to generate electrical fields. Subsequently, we analyzed the impact of scaffold-generated piezoelectric stimulation on MC3T3 pre-osteoblast behavior. Our results confirmed that FFF could form high-resolution, macroporous piezoelectric scaffolds, and the poled PCL-BaTiO3 composites resulted in the d33 coefficient in the range of 1.2-2.6 pC/N, which is proven suitable for osteogenesis. In vitro results revealed that the scaffolds with a mean pore size of 320 µm resulted in the highest pre-osteoblast growth kinetics. While 1 Hz US resulted in enhanced pre-osteoblast adhesion, proliferation, and spreading, 3 Hz US benefited osteoblast differentiation by upregulating important osteogenic markers. This study proves that 3D-printed bioactive piezoelectric scaffolds coupled with US are promising to expedite bone regeneration in orthopedic defects.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | | | | |
Collapse
|
7
|
Kawauchi S, Yasuhara T, Kin K, Yabuno S, Sugahara C, Nagase T, Hosomoto K, Okazaki Y, Tomita Y, Umakoshi M, Sasaki T, Kameda M, Borlongan CV, Date I. Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats. CNS Neurosci Ther 2022; 28:1974-1985. [PMID: 36000240 PMCID: PMC9627357 DOI: 10.1111/cns.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. METHODS We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. RESULTS In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. CONCLUSION SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Kawauchi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takao Yasuhara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyohei Kin
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan,Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Satoru Yabuno
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Sugahara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayuki Nagase
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kakeru Hosomoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yosuke Okazaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yousuke Tomita
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michiari Umakoshi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tatsuya Sasaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South FloridaTampaFloridaUSA
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
8
|
Tan S, Yao Y, Yang Q, Yuan XL, Cen LP, Ng TK. Diversified Treatment Options of Adult Stem Cells for Optic Neuropathies. Cell Transplant 2022; 31. [PMID: 36165292 PMCID: PMC9523835 DOI: 10.1177/09636897221123512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Optic neuropathies refer to a group of ocular disorders with abnormalities or dysfunction of the optic nerve, sharing a common pathophysiology of retinal ganglion cell (RGC) death and axonal loss. RGCs, as the retinal neurons in the central nervous system, show limited capacity in regeneration or recovery upon diseases or after injuries. Critically, there is still no effective clinical treatment to cure most types of optic neuropathies. Recently, stem cell therapy was proposed as a potential treatment strategy for optic neuropathies. Adult stem cells, including mesenchymal stem cells and hematopoietic stem cells, have been applied in clinical trials based on their neuroprotective properties. In this article, the applications of adult stem cells on different types of optic neuropathies and the related mechanisms will be reviewed. Research updates on the strategies to enhance the neuroprotective effects of human adult stem cells will be summarized. This review article aims to enlighten the research scientists on the diversified functions of adult stem cells and consideration of adult stem cells as a potential treatment for optic neuropathies in future clinical practices.
Collapse
Affiliation(s)
- Shaoying Tan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
9
|
Kingsbury C, Shear A, Heyck M, Sadanandan N, Zhang H, Gonzales-Portillo B, Cozene B, Sheyner M, Navarro-Torres L, García-Sánchez J, Lee JY, Borlongan CV. Inflammation-relevant microbiome signature of the stroke brain, gut, spleen, and thymus and the impact of exercise. J Cereb Blood Flow Metab 2021; 41:3200-3212. [PMID: 34427146 PMCID: PMC8669279 DOI: 10.1177/0271678x211039598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stroke remains a significant unmet need in the clinic with few therapeutic options. We, and others, have implicated the role of inflammatory microbiota in stroke secondary cell death. Elucidating this inflammation microbiome as a biomarker may improve stroke diagnosis and treatment. Here, adult Sprague-Dawley rats performed 30 minutes of exercise on a motorized treadmill for 3 consecutive days prior to transient middle cerebral artery occlusion (MCAO). Stroke animals that underwent exercise showed 1) robust behavioral improvements, 2) significantly smaller infarct sizes and increased peri-infarct cell survival and 3) decreasing trends of inflammatory microbiota BAC303, EREC482, and LAB158 coupled with significantly reduced levels of inflammatory markers ionized calcium binding adaptor molecule 1, tumor necrosis factor alpha, and mouse monoclonal MHC Class II RT1B in the brain, gut, spleen, and thymus compared to non-exercised stroke rats. These results suggest that a specific set of inflammatory microbiota exists in central and peripheral organs and can serve as a disease biomarker and a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro-Torres
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
10
|
Deng Y, Guo F, Han X, Huang X. Repetitive transcranial magnetic stimulation increases neurological function and endogenous neural stem cell migration via the SDF-1α/CXCR4 axis after cerebral infarction in rats. Exp Ther Med 2021; 22:1037. [PMID: 34373723 PMCID: PMC8343462 DOI: 10.3892/etm.2021.10469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neural stem cell (NSC) migration is closely associated with brain development and is reportedly involved during recovery from ischaemic stroke. Chemokine signalling mediated by stromal cell-derived factor 1α (SDF-1α) and its receptor CXC chemokine receptor 4 (CXCR4) has been previously documented to guide the migration of NSCs. Although repetitive transcranial magnetic stimulation (rTMS) can increase neurological function in a rat stroke model, its effects on the migration of NSCs and associated underlying mechanism remain unclear. Therefore, the present study investigated the effects of rTMS on ischaemic stroke following middle cerebral artery occlusion (MCAO). All rats underwent rTMS treatment 24 h after MCAO. Neurological function, using modified Neurological Severity Scores and grip strength test and NSC migration, which were measured using immunofluorescence staining, were analysed at 7 and 14 days after MCAO, before the protein expression levels of the SDF-1α/CXCR4 axis was evaluated using western blot analysis. AMD3100, a CXCR4 inhibitor, was used to assess the effects of SDF-1α/CXCR4 signalling. In addition, neuronal survival was investigated using Nissl staining at 14 days after MCAO. It was revealed that rTMS increased the neurological recovery of rats with MCAO, facilitated the migration of NSC, augmented the expression levels of the SDF-1α/CXCR4 axis and decreased neuronal loss. Furthermore, the rTMS-induced positive responses were significantly abolished by AMD3100. Overall, these results indicated that rTMS conferred therapeutic neuroprotective properties, which can restore neurological function after ischaemic stroke, in a manner that may be associated with the activation of the SDF-1α/CXCR4 axis.
Collapse
Affiliation(s)
- Yuguo Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Guo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaohua Han
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
11
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
12
|
Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering. Stem Cells Int 2021; 2021:6697574. [PMID: 33968150 PMCID: PMC8081629 DOI: 10.1155/2021/6697574] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve injuries and neurodegenerative disorders remain serious challenges, owing to the poor treatment outcomes of in situ neural stem cell regeneration. The most promising treatment for such injuries and disorders is stem cell-based therapies, but there remain obstacles in controlling the differentiation of stem cells into fully functional neuronal cells. Various biochemical and physical approaches have been explored to improve stem cell-based neural tissue engineering, among which electrical stimulation has been validated as a promising one both in vitro and in vivo. Here, we summarize the most basic waveforms of electrical stimulation and the conductive materials used for the fabrication of electroactive substrates or scaffolds in neural tissue engineering. Various intensities and patterns of electrical current result in different biological effects, such as enhancing the proliferation, migration, and differentiation of stem cells into neural cells. Moreover, conductive materials can be used in delivering electrical stimulation to manipulate the migration and differentiation of stem cells and the outgrowth of neurites on two- and three-dimensional scaffolds. Finally, we also discuss the possible mechanisms in enhancing stem cell neural differentiation using electrical stimulation. We believe that stem cell-based therapies using biocompatible conductive scaffolds under electrical stimulation and biochemical induction are promising for neural regeneration.
Collapse
|
13
|
Highly elastic, electroconductive, immunomodulatory graphene crosslinked collagen cryogel for spinal cord regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111518. [PMID: 33255073 DOI: 10.1016/j.msec.2020.111518] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Novel amino-functionalized graphene crosslinked collagen based nerve conduit having appropriate electric (3.8 ± 0.2 mSiemens/cm) and mechanical cues (having young modulus value of 100-347 kPa) for stem cell transplantation and neural tissue regeneration was fabricated using cryogelation. The developed conduit has shown sufficiently high porosity with interconnectivity between the pores. Raman spectroscopy analysis revealed the increase in orderliness and crosslinking of collagen molecules in the developed cryogel due to the incorporation of amino-functionalized graphene. BM-MSCs grown on graphene collagen cryogels have shown enhanced expression of CD90 and CD73 gene upon electric stimulation (100 mV/mm) contributing towards maintaining their stemness. Furthermore, an increased secretion of ATP from BM-MSCs grown on graphene collagen cryogel was also observed upon electric stimulation that may help in regeneration of neurons and immuno-modulation. Neuronal differentiation of BM-MSCs on graphene collagen cryogel in the presence of electric stimulus showed an enhanced expression of MAP-2 kinase and β-tubulin III. Immunohistochemistry studies have also demonstrated the improved neuronal differentiation of BM-MSCs. BM-MSCs grown on electro-conductive collagen cryogels under inflammatory microenvironment in vitro showed high indoleamine 2,3 dioxygenase activity. Moreover, macrophages cells grown on graphene collagen cryogels have shown high CD206 (M2 polarization marker) and CD163 (M2 polarization marker) and low CD86 (M1 polarization marker) gene expression demonstrating M2 polarization of macrophages, which may aid in tissue repair. In an organotypic culture, the developed cryogel conduit has supported cellular growth and migration from adult rat spinal cord. Thus, this novel electro-conductive graphene collagen cryogels have potential for suppressing the neuro-inflammation and promoting the neuronal cellular migration and proliferation, which is a major barrier during the spinal cord regeneration.
Collapse
|
14
|
Cerebellar Blood Flow and Gene Expression in Crossed Cerebellar Diaschisis after Transient Middle Cerebral Artery Occlusion in Rats. Int J Mol Sci 2020; 21:ijms21114137. [PMID: 32531947 PMCID: PMC7312675 DOI: 10.3390/ijms21114137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Crossed cerebellar diaschisis (CCD) is a state of hypoperfusion and hypometabolism in the contralesional cerebellar hemisphere caused by a supratentorial lesion, but its pathophysiology is not fully understood. We evaluated chronological changes in cerebellar blood flow (CbBF) and gene expressions in the cerebellum using a rat model of transient middle cerebral artery occlusion (MCAO). CbBF was analyzed at two and seven days after MCAO using single photon emission computed tomography (SPECT). DNA microarray analysis and western blotting of the cerebellar cortex were performed and apoptotic cells in the cerebellar cortex were stained. CbBF in the contralesional hemisphere was significantly decreased and this lateral imbalance recovered over one week. Gene set enrichment analysis revealed that a gene set for “oxidative phosphorylation” was significantly upregulated while fourteen other gene sets including “apoptosis”, “hypoxia” and “reactive oxygen species” showed a tendency toward upregulation in the contralesional cerebellum. MCAO upregulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the contralesional cerebellar cortex. The number of apoptotic cells increased in the molecular layer of the contralesional cerebellum. Focal cerebral ischemia in our rat MCAO model caused CCD along with enhanced expression of genes related to oxidative stress and apoptosis.
Collapse
|
15
|
Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Okazaki M, Sasaki T, Tajiri N, Borlongan CV, Date I. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 2020; 25:1202-1214. [PMID: 30108315 DOI: 10.1038/s41380-018-0208-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Despite the advances in pharmacological therapies, only the half of depressed patients respond to currently available treatment. Thus, the need for further investigation and development of effective therapies, especially those designed for treatment-resistant depression, has been sorely needed. Although antidepressant effects of mesenchymal stem cells (MSCs) have been reported, the potential benefit of this cell therapy on treatment-resistant depression is unknown. Cell encapsulation may enhance the survival rate of grafted cells, but the therapeutic effects and mechanisms mediating encapsulation of MSCs remain unexplored. Here, we showed that encapsulation enhanced the antidepressant effects of MSCs by attenuating depressive-like behavior of Wistar Kyoto (WKY) rats, which are considered as a promising animal model of treatment-resistant depression. The implantation of encapsulated MSCs (eMSCs) into the lateral ventricle counteracted depressive-like behavior and enhanced the endogenous neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus, whereas the implantation of MSCs without encapsulation or the implantation of eMSCs into the striatum did not show such ameliorative effects. eMSCs displayed robust and stable secretion of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, fibroblast growth factor-2, and ciliary neurotrophic factor (CNTF), and the implantation of eMSCs into the lateral ventricle activated relevant pathways associated with these growth factors. Additionally, eMSCs upregulated intrinsic expression of VEGF and CNTF and their receptors. This study suggests that the implantation of eMSCs into the lateral ventricle exerted antidepressant effects likely acting via neurogenic pathways, supporting their utility for depression treatment.
Collapse
Affiliation(s)
- Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ken Kuwahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoya Kidani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.,Department of Psychology, Kibi International University Graduate School of Psychology, 8, iga-cho, takahashi-shi, Okayama, 716-8508, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
16
|
Ito A, Kubo N, Liang N, Aoyama T, Kuroki H. Regenerative Rehabilitation for Stroke Recovery by Inducing Synergistic Effects of Cell Therapy and Neurorehabilitation on Motor Function: A Narrative Review of Pre-Clinical Studies. Int J Mol Sci 2020; 21:ijms21093135. [PMID: 32365542 PMCID: PMC7247676 DOI: 10.3390/ijms21093135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases severely affect the quality of life of patients. Although existing treatments including rehabilitative therapy aim to facilitate the recovery of motor function, achieving complete recovery remains a challenge. In recent years, regenerative therapy has been considered as a potential candidate that could yield complete functional recovery. However, to achieve desirable results, integration of transplanted cells into neural networks and generation of appropriate microenvironments are essential. Furthermore, considering the nascent state of research in this area, we must understand certain aspects about regenerative therapy, including specific effects, nature of interaction when administered in combination with rehabilitative therapy (regenerative rehabilitation), and optimal conditions. Herein, we review the current status of research in the field of regenerative therapy, discuss the findings that could hold the key to resolving the challenges associated with regenerative rehabilitation, and outline the challenges to be addressed with future studies. The current state of research emphasizes the importance of determining the independent effect of regenerative and rehabilitative therapies before exploring their combined effects. Furthermore, the current review highlights the progression in the treatment perspective from a state of compensation of lost function to that of a possibility of complete functional recovery.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
- Correspondence:
| | - Naoko Kubo
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| |
Collapse
|
17
|
Zhang J, Li Z, Liu W, Zeng W, Duan C, He X. Effects of bone marrow mesenchymal stem cells transplantation on the recovery of neurological functions and the expression of Nogo-A, NgR, Rhoa, and ROCK in rats with experimentally-induced convalescent cerebral ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:390. [PMID: 32355834 PMCID: PMC7186734 DOI: 10.21037/atm.2020.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the effects of intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) on neurological function in rats with experimentally-induced convalescent cerebral ischemia and the expression of Nogo-A, NgR, Rhoa, and ROCK expression. Methods BMSCs were isolated and cultured in vitro using the whole bone marrow adherent method. Eighty-one adult male Sprague-Dawley rats were divided at random into three groups: the sham-operated group, the cerebral ischemia group, and the BMSC treatment group (n=27 rats per group). In the latter two groups, the middle cerebral artery occlusion (MCAO) model was performed by the modified Zea Longa method. After MCAO, rats in the sham-operated and cerebral ischemic groups were injected with 1 mL of phosphate buffered saline (PBS) via the tail vein. In the BMSC-treatment group, 1 mL of the BMSC suspension (containing 3×106 BMSCs) was injected through the rats’ femoral vein. At 12, 24, and 72 h after BMSC transplantation, modified neurological deficit scores (mNSS) were used to assess neurological function. TTC (2,3,5-triphenyl tetrazolium chloride) staining was used to measure the ischemic lesion volume, and the distribution of Nogo-A protein was observed by immunohistochemistry. The expressions of Nogo-A, NgR, Rhoa, and ROCK were detected by Western blot. Results At 72 h after BMSC transplantation, the mNSS scores were significantly lower in the BMSC treatment group than those in the cerebral ischemia group (7.50±0.55 vs. 8.67±0.52, P<0.01), and the ischemic lesions volume was significantly reduced. The expressions of Nogo-A, NgR, RhoA, and ROCK were significantly decreased compared with the controls (P<0.05). Conclusions The transplantation of BMSCs can improve neurological function in rats after convalescent cerebral ischemia, and their therapeutic effect may be related to the downregulation of Nogo-A, NgR, RhoA, and ROCK expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenjun Li
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenxian Zeng
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuying He
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Neurosurgery, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China
| |
Collapse
|
18
|
Liu X, Hu R, Pei L, Si P, Wang C, Tian X, Wang X, Liu H, Wang B, Xia Z, Xu Y, Song B. Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol 2020; 328:113233. [PMID: 32044328 DOI: 10.1016/j.expneurol.2020.113233] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is known to activate the regulatory T lymphocytes (Tregs), which are negatively correlated with brain damage after ischemic stroke. In this study, we aimed to investigate the role of Tregs in IL-33-mediated neuroprotection and elucidate the underlying mechanisms. In vivo, male C57BL/6 N mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO), followed by daily administration of vehicle or IL-33 immediately after injury. Tregs were depleted by intraperitoneal administration of anti-CD25 antibody (anti-CD25Ab). Behavioral changes, brain edema, neuronal injury, Treg percentages, and cytokine expression levels were investigated in each group. In vitro experiments, primary mouse neuronal cells were subjected to oxygen-glucose deprivation (OGD) for 3 h. Vehicle- or drug-conditioned Tregs were applied to the neurons at the time of induction of hypoxia. Neuronal apoptosis and cytokine expression were measured in each group. The results indicate that intraperitoneal administration of anti-CD25Ab reduced CD4 + CD25 + Foxp3+ Tregs, increased infarct volume, enhanced stroke-induced cell death, and decreased sensorimotor functions. Notably, IL-33 increased CD4 + CD25 + Foxp3+ Tregs in the spleen and brain. However, blockading ST2 attenuated these effects of IL-33. The supernatant of the IL-33-treated Treg culture reduced neuronal apoptosis and elevated the production of the Treg cytokines IL-10, IL-35, and transforming growth factor-β (TGF-β). Anti-CD25Ab abrogated the neuroprotective effect of IL-33. Mechanistically, the neuroprotective effects of IL-33 were associated with reduction in apoptosis-related proteins and production of Tregs related cytokines. Overall, these findings showed that IL-33 afforded neuroprotection against ischemic brain injury by enhancing ST2-dependent regulatory T-cell expansion and activation via a mechanism involving anti-apoptosis proteins and cytokines, representing a promising immune modulatory target for the treatment of stroke.
Collapse
Affiliation(s)
- Xinjing Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Ruiyao Hu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Lulu Pei
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Pan Si
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Chunhui Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xuan Tian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Xiao Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Han Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Beng Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Zongping Xia
- The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Bo Song
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; The Henan Key Laboratory of Cerebrovascular Disease, Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
19
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Yasuhara T, Kawauchi S, Kin K, Morimoto J, Kameda M, Sasaki T, Bonsack B, Kingsbury C, Tajiri N, Borlongan CV, Date I. Cell therapy for central nervous system disorders: Current obstacles to progress. CNS Neurosci Ther 2019; 26:595-602. [PMID: 31622035 PMCID: PMC7248543 DOI: 10.1111/cns.13247] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cell therapy for disorders of the central nervous system has progressed to a new level of clinical application. Various clinical studies are underway for Parkinson's disease, stroke, traumatic brain injury, and various other neurological diseases. Recent biotechnological developments in cell therapy have taken advantage of the technology of induced pluripotent stem (iPS) cells. The advent of iPS cells has provided a robust stem cell donor source for neurorestoration via transplantation. Additionally, iPS cells have served as a platform for the discovery of therapeutics drugs, allowing breakthroughs in our understanding of the pathology and treatment of neurological diseases. Despite these recent advances in iPS, adult tissue‐derived mesenchymal stem cells remain the widely used donor for cell transplantation. Mesenchymal stem cells are easily isolated and amplified toward the cells' unique trophic factor‐secretion property. In this review article, the milestone achievements of cell therapy for central nervous system disorders, with equal consideration on the present translational obstacles for clinic application, are described.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences and Medical School, Aichi, Japan
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
21
|
Hu Y, Chen W, Wu L, Jiang L, Qin H, Tang N. Hypoxic preconditioning improves the survival and neural effects of transplanted mesenchymal stem cells via CXCL12/CXCR4 signalling in a rat model of cerebral infarction. Cell Biochem Funct 2019; 37:504-515. [PMID: 31368195 DOI: 10.1002/cbf.3423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/17/2019] [Accepted: 06/18/2019] [Indexed: 11/11/2022]
Abstract
The treatment of neural deficiency after cerebral infarction is challenging, with limited therapeutic options. The transplantation of mesenchymal stem cells (MSCs) to the ischemic penumbra is a potential therapeutic approach. In the present study, a cerebral infarction model was generated by performing middle cerebral artery occlusion (MCAO) in SD rats. The expression of CXCR4 increased, and the number of MSCs migrating to the peri-infarct area was higher in rats transplanted with preconditioned MSCs than in rats transplanted with untreated MSCs. The rate of apoptosis, as evaluated by TUNEL staining and immunoblotting assays, was reduced in rats receiving preconditioned MSCs. A significant amelioration of neural regeneration and improved neurological function were observed in rats injected with preconditioned MSCs compared with those injected with untreated MSCs. However, the application of an siRNA targeting CXCL12 significantly inhibited the protective role of preconditioned MSCs against apoptosis and promoted the migration of MSCs to the ischemic area, leading to impaired neuronal regeneration and limited recovery of neuronal function. Hypoxic preconditioning of MSCs prior to transplantation suppressed apoptosis and increased their migration abilities, leading to the promotion of neuronal regeneration and improvement in neural function after transplantation. This preconditioning strategy may be considered as a potential approach for the modification of MSCs prior to cell transplantation therapy in patients with cerebral infarction. SIGNIFICANCE OF THE STUDY: We found that hypoxic preconditioning of MSCs improved their ability to promote neuronal regeneration and the recovery of neuronal function. Moreover, we showed that CXCR4 inhibited apoptosis, improved cell homing, and promoted neuronal differentiation, without influencing angiogenesis. Our study provides a relatively safe preconditioning method for potential use for cell transplantation therapy in ischemic cerebral infarction. The results presented here will facilitate the development of novel strategies and techniques to improve the tolerance and migration ability of transplanted cells for the treatment of cerebral infarction sequelae.
Collapse
Affiliation(s)
- Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
| | - Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
| | - Lin Wu
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
- Scientific Laboratorial Centre Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lingfei Jiang
- Graduate College of Guangxi University of traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongling Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nong Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Guangxi Basic Chinese, Nanning, Guangxi, China
| |
Collapse
|
22
|
Li J, Zhao Y, Shi J, Ren Z, Chen F, Tang W. Histone deacetylase 6 interference protects mice against experimental stroke-induced brain injury via activating Nrf2/HO-1 pathway. Anim Cells Syst (Seoul) 2019; 23:192-199. [PMID: 31231583 PMCID: PMC6566595 DOI: 10.1080/19768354.2019.1601132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/21/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cerebral stroke is a fatal disease with increasing incidence. The study was to investigate the role and mechanism of Histone deacetylase 6 (HDAC6) on experimental stroke-induced brain injury. The recombinant shRNA-HDAC6 or scramble shRNA lentivirus was transfected to ICR mice. Then, the ischemia/reperfusion injury (I/RI) mice were constructed using middle cerebral artery occlusion (MCAO) method. Brain TTC staining was used to determine infarct areas. Serum levels of oxidative stress-related factors were detected by enzyme linked immunosorbnent assay (ELISA). Realtime-qPCR (RT-qPCR) and Western blot were used to respectively detect mRNA and protein levels. HDAC6 was up-regulated in brain I/RI mice (MCAO group), and down-regulated again in MCAO mice transfected with shRNA-HDAC6 (MCAO + shRNA group). The infarct area of the MCAO mice was increased, neurological scores were higher, and serum protein levels of 3-NT, 4-HNE and 8-OHdG were higher. HDAC6 interference attenuated above effects. Though protein levels of Nrf2 and HO-1 in cytoplasm increased slightly in MCAO group, they increased significantly by HDAC6 interference. The protein levels of Nrf2 in cytoblast decreased significantly in MCAO group, and increased markedly by HDAC6 interference. HDAC6 interference protected mice against experimental stroke-induced brain injury via Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Yanping Zhao
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Junfeng Shi
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Zhanyun Ren
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Feng Chen
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| | - Wuzhuang Tang
- Department of Neurology, Affiliated Yixing Hospital of Jiangsu University/Affiliated Yixing Clinical School of Medical School of Yangzhou University, Yixing, Jiangsu Province, Peoples' Republic of China
| |
Collapse
|
23
|
Schuhmann MK, Stoll G, Bohr A, Volkmann J, Fluri F. Electrical Stimulation of the Mesencephalic Locomotor Region Attenuates Neuronal Loss and Cytokine Expression in the Perifocal Region of Photothrombotic Stroke in Rats. Int J Mol Sci 2019; 20:ijms20092341. [PMID: 31083528 PMCID: PMC6540310 DOI: 10.3390/ijms20092341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
Deep brain stimulation of the mesencephalic locomotor region (MLR) improves the motor symptoms in Parkinson’s disease and experimental stroke by intervening in the motor cerebral network. Whether high-frequency stimulation (HFS) of the MLR is involved in non-motor processes, such as neuroprotection and inflammation in the area surrounding the photothrombotic lesion, has not been elucidated. This study evaluates whether MLR-HFS exerts an anti-apoptotic and anti-inflammatory effect on the border zone of cerebral photothrombotic stroke. Rats underwent photothrombotic stroke of the right sensorimotor cortex and the implantation of a microelectrode into the ipsilesional MLR. After intervention, either HFS or sham stimulation of the MLR was applied for 24 h. The infarct volumes were calculated from consecutive brain sections. Neuronal apoptosis was analyzed by TUNEL staining. Flow cytometry and immunohistochemistry determined the perilesional inflammatory response. Neuronal apoptosis was significantly reduced in the ischemic penumbra after MLR-HFS, whereas the infarct volumes did not differ between the groups. MLR-HFS significantly reduced the release of cytokines and chemokines within the ischemic penumbra. MLR-HFS is neuroprotective and it reduces pro-inflammatory mediators in the area that surrounds the photothrombotic stroke without changing the number of immune cells, which indicates that MLR-HFS enables the function of inflammatory cells to be altered on a molecular level.
Collapse
Affiliation(s)
- Michael K Schuhmann
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| | - Guido Stoll
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| | - Arne Bohr
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| | - Felix Fluri
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
24
|
Hwang S, Choi J, Kim M. Combining Human Umbilical Cord Blood Cells With Erythropoietin Enhances Angiogenesis/Neurogenesis and Behavioral Recovery After Stroke. Front Neurol 2019; 10:357. [PMID: 31024439 PMCID: PMC6467968 DOI: 10.3389/fneur.2019.00357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Disruption of blood flow in the brain induces stroke, the leading cause of death and disability worldwide. However, so far the therapeutic options are limited. Thus, the therapeutic efficacy of cell-based approaches has been investigated to develop a potential strategy to overcome stroke-induced disability. Human umbilical cord blood cells (hUCBCs) and erythropoietin (EPO) both have angiogenic and neurogenic properties in the injured brain, and their combined administration may exert synergistic effects during neurological recovery following stroke. We investigated the therapeutic potential of hUCBC and EPO combination treatment by comparing its efficacy to those of hUCBC and EPO alone. Adult male Sprague-Dawley rats underwent transient middle cerebral artery occlusion (MCAO). Experimental groups were as follows: saline (injected once with saline 7 d after MCAO); hUCBC (1.2 × 107 total nucleated cells, injected once via the tail vein 7 d after MCAO); EPO (500 IU/kg, injected intraperitoneally for five consecutive days from 7 d after MCAO); and combination of hUCBC and EPO (hUCBC+EPO). Behavioral measures (Modified Neurological Severity Score [mNSS] and cylinder test) were recorded to assess neurological outcomes. Four weeks after MCAO, brains were harvested to analyze the status of neurogenesis and angiogenesis. In vitro assays were also conducted using neural stem and endothelial cells in the oxygen-glucose deprivation condition. Performance on the mNSS and cylinder test showed the most improvement in the hUCBC+EPO group, while hUCBC- and EPO-alone treatments showed superior outcomes relative to the saline group. Neurogenesis and angiogenesis in the cortical region was the most enhanced in the hUCBC+EPO group, while the findings in the hUCBC and EPO treatment alone groups were better than those in the saline group. Astrogliosis in the brain tissue was reduced by hUCBC and EPO treatment. The reduction was largest in the hUCBC+EPO group. These results were consistent with in vitro assessments that showed the strongest neurogenic and angiogenic effect with hUCBC+EPO treatment. This study demonstrates that combination therapy is more effective than single therapy with either hUCBC or EPO for neurological recovery from subacute stroke. The common pathway underlying hUCBC and EPO treatment requires further study.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, South Korea
| | - JeeIn Choi
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, South Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, South Korea.,Department of Rehabilitation Medicine, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, South Korea
| |
Collapse
|
25
|
Incontri Abraham D, Gonzales M, Ibarra A, Borlongan CV. Stand alone or join forces? Stem cell therapy for stroke. Expert Opin Biol Ther 2018; 19:25-33. [PMID: 30477353 DOI: 10.1080/14712598.2019.1551872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Stroke is a major cause of mortality and disability with a narrow therapeutic window. Stem cell therapy may enhance the stroke recovery. AREAS COVERE Regenerative medicine via stem cells stands as a novel therapy for stroke. In particular, bone marrow-derived mesenchymal stem cells (MSCs) have neuroprotective and anti-inflammatory properties that improve brain function after stroke. Here, we discuss the safety, efficacy, and mechanism of action underlying the therapeutic effects of bone marrow-derived MSCs. We also examine the discrepant transplant protocols between preclinical studies and clinical trials. Laboratory studies show the safety and efficacy of bone marrow-derived MSCs in stroke models. However, while safe, MSCs remain to be fully evaluated as effective in clinical trials. Furthermore, recognizing the multiple cell death processes associated with stroke, we next discuss the potential therapeutic benefits of a combination therapy. With preliminary results and on-going clinical trials, a careful assessment of dosing, timing, and delivery route regimens will further direct the future of stem cell therapy for neurological disorders, including stroke. EXPERT OPINION Bone marrow-derived MSCs appear to be the optimal stem cell source for stroke therapy. Optimizing dosing, timing, and delivery route should guide the clinical application of bone marrow-derived MSCs.
Collapse
Affiliation(s)
- Diego Incontri Abraham
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA.,b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México
| | - Melissa Gonzales
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Antonio Ibarra
- b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México.,c Faculty of Health Sciences , Proyecto CAMINA A.C , Ciudad de México , México
| | - Cesar V Borlongan
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|