1
|
Bonetti L, Bruzzone SEP, Sedghi NA, Haumann NT, Paunio T, Kantojärvi K, Kliuchko M, Vuust P, Brattico E. Brain predictive coding processes are associated to COMT gene Val158Met polymorphism. Neuroimage 2021; 233:117954. [PMID: 33716157 DOI: 10.1016/j.neuroimage.2021.117954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022] Open
Abstract
Predicting events in the ever-changing environment is a fundamental survival function intrinsic to the physiology of sensory systems, whose efficiency varies among the population. Even though it is established that a major source of such variations is genetic heritage, there are no studies tracking down auditory predicting processes to genetic mutations. Thus, we examined the neurophysiological responses to deviant stimuli recorded with magnetoencephalography (MEG) in 108 healthy participants carrying different variants of Val158Met single-nucleotide polymorphism (SNP) within the catechol-O-methyltransferase (COMT) gene, responsible for the majority of catecholamines degradation in the prefrontal cortex. Our results showed significant amplitude enhancement of prediction error responses originating from the inferior frontal gyrus, superior and middle temporal cortices in heterozygous genotype carriers (Val/Met) vs homozygous (Val/Val and Met/Met) carriers. Integrating neurophysiology and genetics, this study shows how the neural mechanisms underlying optimal deviant detection vary according to the gene-determined cathecolamine levels in the brain.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - S E P Bruzzone
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - N A Sedghi
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - N T Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - T Paunio
- Department of Psychiatry, University of Helsinki, Finland
| | - K Kantojärvi
- Department of Psychiatry, University of Helsinki, Finland
| | - M Kliuchko
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - E Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
| |
Collapse
|
2
|
Hederih J, Nuninga JO, van Eijk K, van Dellen E, Smit DJA, Oranje B, Luykx JJ. Genetic underpinnings of schizophrenia-related electroencephalographical intermediate phenotypes: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110001. [PMID: 32525059 DOI: 10.1016/j.pnpbp.2020.110001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/04/2023]
Abstract
Although substantial research into genetics of psychotic disorders has been conducted, a large proportion of their genetic architecture has remained unresolved. Electroencephalographical intermediate phenotypes (EIP) have the potential to constitute a valuable tool when studying genetic risk loci for schizophrenia, in particular P3b amplitude, P50 suppression, mismatch negativity (MMN) and resting state power spectra of the electroencephalogram (EEG). Here, we systematically reviewed studies investigating the association of single nucleotide polymorphisms (SNPs) with these EIPs and meta-analysed them when appropriate. We retrieved 45 studies (N = 34,971 study participants). Four SNPs investigated in more than one study were genome-wide significant for an association with schizophrenia and three were genome-wide suggestive, based on a lookup in the influential 2014 GWAS (Ripke et al., 2014). However, in our meta-analyses, rs1625579 failed to reach a statistically significant association with p3b amplitude decrease and rs4680 risk allele carrier status was not associated with p3b amplitude decrease or with impaired p50 suppression. In conclusion, evidence for SNP associations with EIPs remains limited to individual studies. Careful selection of EIPs and SNPs, combined with consistent reporting of effect sizes, directions of effect and p-values would aid future meta-analyses.
Collapse
Affiliation(s)
- Jure Hederih
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands; Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - Jasper O Nuninga
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands
| | - Kristel van Eijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Dirk J A Smit
- Department of Psychiatry, Academic Medical Centre, Meibergdreef 5, Amsterdam 1105 AZ, the Netherlands
| | - Bob Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands
| | - Jurjen J Luykx
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, CX 3584, the Netherlands; GGNet Mental Health, Apeldoorn, the Netherlands
| |
Collapse
|
3
|
Rentzsch J, Thoma L, Gaudlitz K, Tänzer N, Gallinat J, Kathmann N, Ströhle A, Plag J. Reduced Sensitivity to Non-Fear-Related Stimulus Changes in Panic Disorder. Neuropsychobiology 2019; 78:31-37. [PMID: 30947222 DOI: 10.1159/000498867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
Abstract
Panic disorder (PD) is associated with increased body vigilance and reduced cognitive resources directed at non-fear-related stimuli, particularly in the absence of stimulus-rich environments. To date, only few studies have investigated whether this deficit in PD is reflected in reduced mismatch negativity (MMN), an event-related potential indexing preattentive sensitivity to unexpected stimulus changes. We tested 35 patients affected by PD and 42 matched healthy controls in an oddball paradigm, using frequency and duration deviant stimuli to measure auditory MMN. PD patients displayed reduced duration MMN amplitudes in comparison to healthy controls. No group differences were detected for duration MMN latency, as well as frequency MMN indices. Results support the notion of reduced processing of non-fear-related stimuli in PD patients, particularly with regard to the preattentive processing of sound duration deviants. Additionally, our findings are in line with clinical studies reporting divergent deficits in preattentive processing of frequency and duration deviants.
Collapse
Affiliation(s)
- Johannes Rentzsch
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Lars Thoma
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Gaudlitz
- Zentrum für Angst- und Depressionsbehandlung Zürich ZADZ, Zürich, Switzerland
| | - Nicole Tänzer
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jens Plag
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,
| |
Collapse
|