1
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Ultimescu F, Hudita A, Popa DE, Olinca M, Muresean HA, Ceausu M, Stanciu DI, Ginghina O, Galateanu B. Impact of Molecular Profiling on Therapy Management in Breast Cancer. J Clin Med 2024; 13:4995. [PMID: 39274207 PMCID: PMC11396537 DOI: 10.3390/jcm13174995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Breast cancer (BC) remains the most prevalent cancer among women and the leading cause of cancer-related mortality worldwide. The heterogeneity of BC in terms of histopathological features, genetic polymorphisms, and response to therapies necessitates a personalized approach to treatment. This review focuses on the impact of molecular profiling on therapy management in breast cancer, emphasizing recent advancements in next-generation sequencing (NGS) and liquid biopsies. These technologies enable the identification of specific molecular subtypes and the detection of blood-based biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-educated platelets (TEPs). The integration of molecular profiling with traditional clinical and pathological data allows for more tailored and effective treatment strategies, improving patient outcomes. This review also discusses the current challenges and prospects of implementing personalized cancer therapy, highlighting the potential of molecular profiling to revolutionize BC management through more precise prognostic and therapeutic interventions.
Collapse
Affiliation(s)
- Flavia Ultimescu
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Doctoral School of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Ariana Hudita
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania
| | - Daniela Elena Popa
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020956 Bucharest, Romania
| | - Maria Olinca
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Mihail Ceausu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Octav Ginghina
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010221 Bucharest, Romania
- Department of Surgery 3, "Prof. Dr. Al. Trestioreanu" Institute of Oncology Bucharest, 022328 Bucharest, Romania
| | - Bianca Galateanu
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
4
|
Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, Alavi MS, Moghbeli M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res 2023; 56:1. [PMID: 36597150 PMCID: PMC9808980 DOI: 10.1186/s40659-022-00411-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Rahimi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Sadat Alavi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Metastatic Breast Cancer: Cytology Diagnosis with Implications for Treatment. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is among the most frequent malignancies in women worldwide. While early detection and effective treatment provide many women with a cure and prevent their cancer from spreading, metastases to distant sites still occur in around 20% of women suffering from breast cancer. These relapses occur in many forms and locations and are as varied as the primary breast tumors. Metastatic spread makes a cancer incurable and potentially lethal, but new, targeted treatments can offer control of the cancer cells if the features of new targets are unlocked by advanced diagnostic testing. The article offers an overview of the pathomechanisms of metastatic progression and describes the types of metastases, such as hormone-receptor-positive and -negative breast cancers, and HER2-overexpressing or triple-negative types. Once distant metastatic spread occurs, cytology allows a precise diagnosis to confirm the breast origin. Other molecular targets include ESR1 and PIK3CA mutations, MSI, NTRK fusion, PD-L1 expression and others, which can be obtained also from cytology material and used to determine eligibility for emerging targeted therapeutic options. We outline the diagnostic features of metastatic breast cancer in cytology samples, together with validated and emergent biomarkers that may provide new, targeted treatment options.
Collapse
|
6
|
Luo C, Wang L, Zhang Y, Lu M, Lu B, Cai J, Chen H, Dai M. Advances in breast cancer screening modalities and status of global screening programs. Chronic Dis Transl Med 2022; 8:112-123. [PMID: 35774423 PMCID: PMC9215717 DOI: 10.1002/cdt3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy worldwide, and a continued upward trend has been predicted in the coming decades. Screening in selected targeted populations, which is effective in reducing cancer-related mortality, has been widely implemented in many countries. This review summarizes the advances in BC screening techniques, organized or opportunistic BC screening programs across different countries, and screening modalities recommended by different academic authorities. Mammography is the most widely used and effective technique for BC screening. Other complementary techniques include ultrasound, clinical breast examination, and magnetic resonance imaging. Novel screening tests, including digital breast tomosynthesis and liquid biopsies, are still under development. Globally, the implementation status of BC screening programs is uneven, which is reflected by differences in screening modes, techniques, and population coverage. The recommended optimal screening strategies varied according to the authoritative guidelines. The effectiveness of current screening programs is influenced by several factors, including low detection rate, high false-positive rate, and unsatisfactory coverage and uptake rates. Exploration of accurate BC risk prediction models and the development of risk-stratified screening strategies are highly warranted in future research.
Collapse
Affiliation(s)
- Chenyu Luo
- Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Le Wang
- Department of Cancer PreventionCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouZhejiangChina
| | - Yuhan Zhang
- Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming Lu
- Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bin Lu
- Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Cai
- Department of General Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hongda Chen
- Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Dai
- Medical Research Center, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Tay TKY, Tan PH. Liquid Biopsy in Breast Cancer: A Focused Review. Arch Pathol Lab Med 2021; 145:678-686. [PMID: 32045277 DOI: 10.5858/arpa.2019-0559-ra] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 01/27/2023]
Abstract
CONTEXT.— The role of liquid biopsy in cancer management has been gaining increased prominence in the past decade, with well-defined clinical applications now being established in lung cancer. Recently, the US Food and Drug Administration also approved the Therascreen PIK3CA RGQ polymerase chain reaction assay as a companion diagnostic assay to detect PIK3CA mutations in breast cancer for both tissue and liquid biopsies, bringing the role of liquid biopsy in breast cancer management to the fore. Its utility in other aspects of breast cancer, however, is yet to be clearly defined. OBJECTIVE.— To review the studies that looked at liquid biopsies in breast cancer and examine their potential for clinical application in the areas of early diagnosis, prognostication, monitoring disease response, detecting minimal residual disease, and predicting risk of progression or relapse. We focus mainly on circulating tumor cells and circulating tumor DNA. DATA SOURCES.— Peer-reviewed articles in PubMed. CONCLUSIONS.— Liquid biopsies in breast cancers have yielded promising results, especially in the areas of monitoring treatment response and predicting disease progression or relapse. With further study, and hopefully coupled with continued improvements in technologies that isolate tumor-derived materials, liquid biopsies may go on to play a greater role in the breast cancer clinic.
Collapse
Affiliation(s)
- Timothy Kwang Yong Tay
- From the Department of Anatomical Pathology (Tay, Tan), Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- From the Department of Anatomical Pathology (Tay, Tan), Singapore General Hospital, Singapore.,The Division of Pathology (Tan), Singapore General Hospital, Singapore
| |
Collapse
|
8
|
Targeted Next-Generation Sequencing of Circulating Tumor DNA Mutations among Metastatic Breast Cancer Patients. ACTA ACUST UNITED AC 2021; 28:2326-2336. [PMID: 34202466 PMCID: PMC8293138 DOI: 10.3390/curroncol28040214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/02/2023]
Abstract
Liquid biopsy through the detection of circulating tumor DNA (ctDNA) has potential advantages in cancer monitoring and prediction. However, most previous studies in this area were performed with a few hotspot genes, single time point detection, or insufficient sequencing depth. In this study, we performed targeted next-generation sequencing (NGS) with a customized panel in metastatic breast cancer (MBC) patients. Fifty-four plasma samples were taken before chemotherapy and after the third course of treatment for detection and analysis. Paired lymphocytes were also included to eliminate clonal hematopoiesis (CH)-related alternatives. A total of 1182 nonsynonymous mutations in 419 genes were identified. More ctDNA mutations were detected in patients with tumors > 3 cm (p = 0.035) and HER2(−) patients (p = 0.029). For a single gene, the distribution of ctDNA mutations was also correlated with clinical characteristics. Multivariate regression analysis revealed that HER2 status was significantly associated with mutation burden (OR 0.02, 95% CI 0–0.62, p = 0.025). The profiles of ctDNA mutations exhibited marked discrepancies between two time points, and baseline ctDNA was more sensitive and specific than that after chemotherapy. Finally, elevated ctDNA mutation level was positively correlated with poor survival (p < 0.001). Mutations in ctDNA could serve as a potential biomarker for the evaluation, prediction, and clinical management guidance of MBC patients with chemotherapy.
Collapse
|
9
|
Sanchez Barea J, Kang D. Integration of Surface‐enhanced Raman Spectroscopy with
PCR
for Monitoring Single Copy of
KRAS G12D
Mutation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Sanchez Barea
- Department of Chemistry Incheon National University Incheon 22012 Republic of Korea
| | - Dong‐Ku Kang
- Department of Chemistry Incheon National University Incheon 22012 Republic of Korea
- Department of Chemistry Research Institute of Basic Sciences, Incheon National University Incheon 22012 Republic of Korea
| |
Collapse
|
10
|
Sun Y, Wang R. A Risk Score System Based on the Methylation Levels of 15 RNAs in Breast Cancer. Cancer Biother Radiopharm 2021; 37:697-707. [PMID: 33571027 DOI: 10.1089/cbr.2020.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Breast cancer (BC) occurs in the epithelial tissues of the breast gland, which is the most common cancer in women. This study is implemented to construct a risk score system for BC. Methods: The methylation data of BC from The Cancer Genome Atlas database (the training set) and GSE37754 from Gene Expression Omnibus database (the validation set) were downloaded. The differentially methylated RNAs (DMRs) between BC and normal samples were screened by limma package, and the correlations between the expression levels and methylation levels of the DMRs were analyzed to calculate their Pearson correlation coefficients (PCCs) using the cor.test function. To build the risk score system, the optimal RNAs were identified by penalized package. Subsequently, the nomogram survival model was established using the rms package. The lncRNA-mRNA comethylation network was constructed by Cytoscape software, and then enrichment analysis was performed using DAVID tool. Results: From the 1170 DMRs between BC and normal samples, 800 DMRs with significant negative PCCs were screened. For building the risk score system, the 15 optimal RNAs were selected. Afterward, the nomogram survival model based on four independent clinical prognostic factors (including age, radiation therapy, tumor recurrence, and RS model status) was constructed. In the comethylation network, the long noncoding RNA (lncRNA) PRNT was comethylated with FAM19A5 and RBM24. For the mRNAs in the comethylation network, angiogenesis and pathways in cancer were enriched. Conclusion: The risk score system and the nomogram survival model might be of great importance for the prognosis prediction of BC patients.
Collapse
Affiliation(s)
- Ying Sun
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rengui Wang
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Yoo TK. Liquid Biopsy in Breast Cancer: Circulating Tumor Cells and Circulating Tumor DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:337-361. [PMID: 33983587 DOI: 10.1007/978-981-32-9620-6_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is associated with gene mutations, and the analysis of tumor-associated mutations is increasingly used for diagnostic, prognostic, and treatment purposes. These molecular landscapes of solid tumors are currently obtained from surgical or biopsy specimens. However, during cancer progression and treatment, selective pressures lead to additional genetic changes as tumors acquire drug resistance. Tissue sampling cannot be performed routinely owing to its invasive nature and a single biopsy only provides a limited snapshot of a tumor, which may fail to reflect spatial and temporal heterogeneity. This dilemma may be solved by analyzing cancer cells or cancer cell-derived DNA from blood samples, called liquid biopsy. Liquid biopsy is one of the most rapidly advancing fields in cancer diagnostics and recent technological advances have enabled the detection and detailed characterization of circulating tumor cells and circulating tumor DNA in blood samples.Liquid biopsy is an exciting area with rapid advances, but we are still at the starting line with many challenges to overcome. In this chapter we will explore how tumor cells and tumor-associated mutations detected in the blood can be used in the clinic. This will include detection of cancer, prediction of prognosis, monitoring systemic therapies, and stratification of patients for therapeutic targets or resistance mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Yoo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Cullinane C, Fleming C, O’Leary DP, Hassan F, Kelly L, O’Sullivan MJ, Corrigan MA, Redmond HP. Association of Circulating Tumor DNA With Disease-Free Survival in Breast Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3:e2026921. [PMID: 33211112 PMCID: PMC7677763 DOI: 10.1001/jamanetworkopen.2020.26921] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPORTANCE Fragmented DNA is continuously released into the circulation following apoptosis and necrosis of both cancerous and noncancerous cells; when it is released by cancer cells, it is specifically known as circulating tumor DNA (ctDNA). Previous studies have suggested that ctDNA can reflect tumor burden and guide potential therapeutic targets. OBJECTIVE To determine the association of ctDNA with breast cancer disease-free survival (DFS) and progression-free survival in early, locally advanced, and metastatic breast cancer. DATA SOURCES An electronic search was conducted using the Cochrane Library, ScienceDirect, PubMed, and Embase from July 30, 2019, to October 31, 2019; all languages were included. The following search terms were used: ctDNA OR circulating tumor DNA OR liquid biopsy AND breast cancer OR breast carcinoma OR breast tumor AND prognosis OR survival. All titles were screened, and the appropriate abstracts were reviewed. If any data were missing, the authors contacted the study authors for permission to access data and extrapolate hazard ratios (HRs). STUDY SELECTION To be included in the analysis, the studies had to meet the following prespecified inclusion criteria: (1) a ctDNA blood sample was measured; (2) DFS, progression-free survival, or relapse-free survival was reported as an HR; and (3) the patient population only had breast cancer. Retrospective and prospective observational cohort studies were included. DATA EXTRACTION AND SYNTHESIS Two authors (C.C. and C.F.) independently reviewed the literature. All data were recorded independently by both authors and were compared at the end of the reviewing process to limit selection bias. Duplicates were removed and any disparities were clarified. Data were pooled using a fixed-effects or random-effects model according to the study heterogeneity. This study adhered to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Meta-Analysis of Observational Studies in Epidemiology (MOOSE). MAIN OUTCOMES AND MEASURES The primary outcome was the association of ctDNA with DFS or relapse-free survival in breast cancer. Secondary outcomes focused on subgroup analysis in the setting of early breast cancer and metastatic breast cancer. RESULTS From a total of 263 publications found using the predefined search terms, data from 8 studies (3.0%) reporting on 739 patients in total were suitable for inclusion. Circulating tumor DNA gene variation detection (both before and after treatment) was statistically significantly associated with shorter DFS (HR, 4.44; 95% CI, 2.29-8.61; P < .001). Detection of ctDNA was statistically significantly associated with a reduction in DFS in both the early breast cancer subgroup (HR, 8.32; 95% CI, 3.01-22.99; P < .001) and the metastatic or locally advanced subgroup (HR, 1.91; 95% CI, 1.35-2.71; P < .001). Pretreatment and posttreatment plasma sample collection was analyzed in both early and metastatic groups. The posttreatment group encompassed both surgical and oncologic therapy. Pretreatment plasma detection of ctDNA was statistically significantly associated with reduced DFS (HR, 3.30; 95% CI, 1.98-5.52; P < .001). Posttreatment sampling of ctDNA failed to achieve statistical significance (HR, 8.17; 95% CI, 1.01-65.89; P = .05). CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, elevated plasma ctDNA was associated with a high risk of relapse. This finding suggests that plasma ctDNA may provide an excellent method to stratify risk and personalize patient follow-up.
Collapse
Affiliation(s)
- Carolyn Cullinane
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Christina Fleming
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Donal Peter O’Leary
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Fara Hassan
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Louise Kelly
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Martin J. O’Sullivan
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Mark Antony Corrigan
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| | - Henry Paul Redmond
- Department of General and Breast Surgery, Cork University Hospital, Cork, Ireland
- Cork Breast Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|
14
|
Zelinova K, Jagelkova M, Laucekova Z, Bobrovska M, Dankova Z, Grendar M, Dokus K. Molecular analysis of circulating tumor DNA from breast cancer patients before and after surgery and following adjuvant chemotherapy. Mol Clin Oncol 2020; 13:26. [PMID: 32765873 PMCID: PMC7403808 DOI: 10.3892/mco.2020.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The primary aim of the present study is to provide a complex molecular profile of tumors using liquid biopsy and to monitor profile changes over time in association with surgery and administered adjuvant therapy. Our secondary aim was to compare the liquid biopsy profile with the tissue biopsy and assess concordance. A total of 27 samples of circulating tumor DNA (ctDNA) collected from 9 breast cancer patients at three different time points and their matched formalin-fixed and paraffin-embedded (FFPE) samples of primary tumor were analyzed with targeted next-generation sequencing. Somatic pathogenic variants were detected before surgery in samples from 5 patients (55.6%). The most frequently mutated genes were phosphatase and tensin homolog (4/9, 44.4%) and tumor protein 53 (4/9, 44.4%). Serial sampling of ctDNA enabled the detection of more variants compared with single-time tissue primary tumor biopsy. There were 17 ctDNA variants across all samples, but only 6 FFPE variants across all patients. In addition, the concordance between ctDNA and FFPE DNA was determined in only 1 patient, and this was connected with higher variant allele frequency. The findings of the present study suggest that liquid biopsy and tissue biopsy may be used as complementary analyses to adequately capture all tumor variants.
Collapse
Affiliation(s)
- Katarina Zelinova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia.,Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Marianna Jagelkova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia.,Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Zuzana Laucekova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Martina Bobrovska
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Zuzana Dankova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia
| | - Marian Grendar
- Department of Bioinformatics, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-036 01 Martin, Slovakia
| | - Karol Dokus
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, SK-036 01 Martin, Slovakia.,Second Department of Obstetrics and Gynecology, Slovak Medical University, Faculty Hospital with Polyclinic of F.D. Roosevelt, 975 17 Banska Bystrica, Slovakia
| |
Collapse
|