1
|
Perry J, Mennan C, Cool P, McCarthy HS, Newell K, Hopkins T, Hulme C, Wright KT, Henson FMD, Roberts S. Intra-Articular Injection of Human Umbilical Cord-Derived Mesenchymal Stromal Cells Reduces Radiographic Osteoarthritis in an Ovine Model. Cartilage 2024:19476035241287832. [PMID: 39491540 DOI: 10.1177/19476035241287832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE To determine if mesenchymal stromal cells (MSCs) derived from human umbilical cords (hUC) could reduce degeneration developing when injected into the knee of a large animal model of osteoarthritis (OA). DESIGN Ten million culture-expanded UC-MSCs (pooled from 3 human donors) were injected in 50 μL of tissue culture medium into the left stifle joints of 7 sheep whose medial meniscus was transected 4 weeks previously. Seven other sheep had only 50 μL of medium injected as the no treatment "control" group. After 8 weeks the sheep underwent euthanasia, the joints were excised and examined macroscopically, via x-ray and magnetic resonance imaging (MRI), both via histology for degenerative and inflammatory changes and immunohistochemically to identify any human cells within the joint tissues. Activity monitoring both before meniscus transection and euthanasia was also undertaken. RESULTS There was a significant reduction in the Kellgren-Lawrence x-ray score for joints injected with hUC-MSCs compared with the control joints. Likewise, macroscopic, MRI, synovitis and OARSI histology scores were all lower (better) in the joints injected with hUC-MSCs than in the control arm, but not significantly. Activity levels and synovitis scores were similar in both groups of animals. CONCLUSIONS hUC-MSCs appear to modify and reduce the development of osteoarthritic changes in the ovine stifle joint after meniscal destabilization, an injury which commonly leads to OA in humans. These results are encouraging for the potential benefit of culture expanded UC-MSCs as an allogeneic cell therapy in patients who may have early OA following a meniscal injury of the knee.
Collapse
Affiliation(s)
- Jade Perry
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Claire Mennan
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Paul Cool
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Helen S McCarthy
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Karin Newell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Timothy Hopkins
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Charlotte Hulme
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Karina T Wright
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Frances M D Henson
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Sally Roberts
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| |
Collapse
|
2
|
Chu H, Zhang S, Zhang Z, Yue H, Liu H, Li B, Yin F. Comparison studies identify mesenchymal stromal cells with potent regenerative activity in osteoarthritis treatment. NPJ Regen Med 2024; 9:14. [PMID: 38561335 PMCID: PMC10984924 DOI: 10.1038/s41536-024-00358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Osteoarthritis affects 15% of people over 65 years of age. It is characterized by articular cartilage degradation and inflammation, leading to joint pain and disability. Osteoarthritis is incurable and the patients may eventually need joint replacement. An emerging treatment is mesenchymal stromal cells (MSCs), with over two hundred clinical trials being registered. However, the outcomes of these trials have fallen short of the expectation, due to heterogeneity of MSCs and uncertain mechanisms of action. It is generally believed that MSCs exert their function mainly by secreting immunomodulatory and trophic factors. Here we used knee osteoarthritis mouse model to assess the therapeutic effects of MSCs isolated from the white adipose or dermal adipose tissue of Prrx1-Cre; R26tdTomato mice and Dermo1-Cre; R26tdTomato mice. We found that the Prrx1-lineage MSCs from the white adipose tissues showed the greatest in vitro differentiation potentials among the four MSC groups and single cell profiling showed that the Prrx1-lineage MSCs contained more stem cells than the Dermo1 counterpart. Only the Prrx1-lineage cells isolated from white adipose tissues showed long-term therapeutic effectiveness on early-stage osteoarthritis models. Mechanistically, Prrx1-lineage MSCs differentiated into Col2+ chondrocytes and replaced the damage cartilage, activated Col1 expressing in resident chondrocytes, and inhibited synovial inflammation. Transcriptome analysis showed that the articular chondrocytes derived from injected MSCs expressed immunomodulatory cytokines, trophic factors, and chondrocyte-specific genes. Our study identified a MSC population genetically marked by Prrx1 that has great multipotentiality and can differentiate into chondrocytes to replace the damaged cartilage.
Collapse
Affiliation(s)
- Hongshang Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoyang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hua Yue
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Feng Yin
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Department of Joint and Sports Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Rodeo SA. Is cell therapy no better than steroid injection? Nat Rev Rheumatol 2024:10.1038/s41584-024-01082-z. [PMID: 38273002 DOI: 10.1038/s41584-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Scott A Rodeo
- Weill Medical College of Cornell University, New York, NY, USA.
- The Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
4
|
Li S, Yuan Q, Yang M, Long X, Sun J, Yuan X, Liu L, Zhang W, Li Q, Deng Z, Tian R, Xu R, Xie L, Yuan J, He Y, Liu Y, Liu H, Yuan Z. Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102723. [PMID: 38007064 DOI: 10.1016/j.nano.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs. MATERIALS AND METHODS MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo. RESULTS EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers. CONCLUSION The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.
Collapse
Affiliation(s)
- Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Minghui Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Renhao Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, PR China.
| | - Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jingna Yuan
- Jinhang Bio-science and Biotechnology Co. Ltd, Guangzhou 510663, PR China.
| | - Yue He
- Jinhang Bio-science and Biotechnology Co. Ltd, Guangzhou 510663, PR China.
| | - Yi Liu
- Orthopedics Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, PR China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Makarczyk MJ. Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis 2023; 19:2278235. [PMID: 37963189 PMCID: PMC10898818 DOI: 10.1080/15476278.2023.2278235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Articular cartilage is a common cartilage type found in a multitude of joints throughout the human body. However, cartilage is limited in its regenerative capacity. A range of methods have been employed to aid adults under the age of 45 with cartilage defects, but other cartilage pathologies such as osteoarthritis are limited to non-steroidal anti-inflammatory drugs and total joint arthroplasty. Cell therapies and synthetic biology can be utilized to assist not only cartilage defects but have the potential as a therapeutic approach for osteoarthritis as well. In this review, we will cover current cell therapy approaches for cartilage defect regeneration with a focus on autologous chondrocyte implantation and matrix autologous chondrocyte implantation. We will then discuss the potential of stem cells for cartilage repair in osteoarthritis and the use of synthetic biology to genetically engineer cells to promote cartilage regeneration and potentially reverse osteoarthritis.
Collapse
Affiliation(s)
- Meagan J Makarczyk
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
7
|
Zhang K, Xu T, Xie H, Li J, Fu W. Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An In Vitro and In Vivo Study. Am J Sports Med 2023; 51:3008-3024. [PMID: 37528751 DOI: 10.1177/03635465231187042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease that causes joint pain and disability. Stem cell therapy is emerging as a promising treatment for OA. PURPOSE To evaluate the ability of peripheral blood-derived mesenchymal stem cells (PBMSCs) combined with donor-matched platelet-rich plasma (PRP) to treat OA in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS PBMSCs and donor-matched PRP were isolated and prepared from the same rabbit. PBMSCs were treated with serum-free medium, fetal bovine serum, and PRP; a series of PBMSC behaviors, including proliferation, migration, and adhesion, were compared among groups. The ability of PBMSCs or PRP alone and PBMSCs+PRP to protect chondrocytes against proinflammatory cytokine (interleukin 1β [IL-1β]) treatment was compared by analyzing reactive oxygen species (ROS)-scavenging ability and apoptosis. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate the expression of extracellular matrix (ECM) metabolism genes and proteins, and Western blotting was used to explore the potential mechanism of the corresponding signaling pathway. In vivo, the effect of PBMSCs+PRP on cartilage and inflammation of the synovium was observed in a surgery-induced OA rabbit model via gross observation, histological and immunohistochemical staining, and enzyme-linked immunosorbent assay. RESULTS Proliferation, migration, and adhesion ability were enhanced in PBMSCs treated with PRP. Moreover, compared with either PBMSCs or PRP alone, PBMSCs+PRP enhanced ROS-scavenging ability and inhibited apoptosis in IL-1β-treated chondrocytes. PBMSCs+PRP also reversed the IL-1β-induced degradation of collagen type 2 and aggrecan and increased expression of matrix metalloproteinase 13, and this effect was related to increased expression of ECM synthesis and decreased expression of degradation and inflammatory genes and proteins. Mechanistically, PBMSCs+PRP reduced the phosphorylation of inhibitor of nuclear factor-κBα (IκBα), which further inhibited the phosphorylation of downstream nuclear factor-κB (NF-κB) in the NF-κB signaling pathway. In vivo, compared with PBMSCs or PRP alone, intra-articular (IA) injection of PBMSCs+PRP enhanced cartilage regeneration and attenuated synovial inflammation in OA-induced rabbits. CONCLUSION These results demonstrate that PRP could enhance biological activities, including viability, migration, and adhesion, in PBMSCs. PBMSCs+PRP could rescue ECM degeneration by inhibiting inflammatory signaling in IL-1β-treated OA chondrocytes. In addition, IA injection of PBMSCs+PRP effectively attenuated OA progression in a surgery-induced OA rabbit model. CLINICAL RELEVANCE PBMSCs+PRP may provide a promising treatment for knee OA, and this study can advance the related basic research.
Collapse
Affiliation(s)
- Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Makarczyk MJ, Hines S, Yagi H, Li ZA, Aguglia AM, Zbikowski J, Padget AM, Gao Q, Bunnell BA, Goodman SB, Lin H. Using Microphysiological System for the Development of Treatments for Joint Inflammation and Associated Cartilage Loss-A Pilot Study. Biomolecules 2023; 13:384. [PMID: 36830751 PMCID: PMC9952916 DOI: 10.3390/biom13020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Osteoarthritis (OA) is a painful and disabling joint disease affecting millions worldwide. The lack of clinically relevant models limits our ability to predict therapeutic outcomes prior to clinical trials, where most drugs fail. Therefore, there is a need for a model that accurately recapitulates the whole-joint disease nature of OA in humans. Emerging microphysiological systems provide a new opportunity. We recently established a miniature knee joint system, known as the miniJoint, in which human bone-marrow-derived mesenchymal stem cells (hBMSCs) were used to create an osteochondral complex, synovial-like fibrous tissue, and adipose tissue analogs. In this study, we explored the potential of the miniJoint in developing novel treatments for OA by testing the hypothesis that co-treatment with anti-inflammation and chondroinducing agents can suppress joint inflammation and associated cartilage degradation. Specifically, we created a "synovitis"-relevant OA model in the miniJoint by treating synovial-like tissues with interleukin-1β (IL-1β), and then a combined treatment of oligodeoxynucleotides (ODNs) suppressing the nuclear factor kappa beta (NF-κB) genetic pathway and bone morphogenic protein-7 (BMP-7) was introduced. The combined treatment with BMP-7 and ODNs reduced inflammation in the synovial-like fibrous tissue and showed an increase in glycosaminoglycan formation in the cartilage portion of the osteochondral complex. For the first time, this study demonstrated the potential of the miniJoint in developing disease-modifying OA drugs. The therapeutic efficacy of co-treatment with NF-κB ODNs and BMP-7 can be further validated in future clinical studies.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Haruyo Yagi
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Zhong Alan Li
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Alyssa M. Aguglia
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Justin Zbikowski
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Anne-Marie Padget
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94350, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94350, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94350, USA
| |
Collapse
|
9
|
Mahameed M, Fussenegger M. Engineering autonomous closed-loop designer cells for disease therapy. iScience 2022; 25:103834. [PMID: 35243222 PMCID: PMC8857602 DOI: 10.1016/j.isci.2022.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mohamed Mahameed
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, 4001 Basel, Switzerland
- Corresponding author
| |
Collapse
|
10
|
Kong J, Zhou X, Lu J, Han Q, Ouyang X, Chen D, Liu A. Maclurin Promotes the Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Regulating miR-203a-3p/Smad1. Cell Reprogram 2022; 24:9-20. [PMID: 35180001 DOI: 10.1089/cell.2021.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) differentiate into chondrocytes under appropriate conditions, providing a method for the treatment of bone- and joint-related diseases. Previously, we found that mulberry (Morus nigra) promoted the chondrogenic differentiation of BMSCs. Although the mechanism of action and active ingredients remain unknown, several studies describe the involvement of micro-RNAs. We obtained BMSCs from the bone marrow of Sprague Dawley rats. Cell Counting Kit-8 assays showed that maclurin (25 μg/mL) treatment was not toxic to BMSCs, and compared with untreated controls, maclurin upregulated Sox9 and Col2a expression. Quantitative-PCR revealed that miR-203a-3p levels decreased significantly during chondrogenic differentiation of BMSCs promoted by maclurin. Compared with treatment with an miR-203a-3p inhibitor, miR-203a-3p mimic inhibited expression of Sox9 and Col2a as evidenced by immunofluorescence staining and Western blotting. Smad1 was identified as a key target gene of miR-203a-3p according to biological-prediction software, and miR-203a-3p negatively regulated its transcription and translation in the dual-luciferase reporter gene assay and Western blotting. Sox9 and Col2a expression was downregulated following transfection of short interfering Smad1 (siSmad1) plasmids into BMSCs. We elucidated how maclurin promotes the chondrogenic differentiation of BMSCs by regulating miR-203a-3p/Smad1, which provides a strategy for future exploration of osteoarthritis therapy through cell transplantation.
Collapse
Affiliation(s)
- Jiechen Kong
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xianxi Zhou
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianghua Lu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianting Han
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiyan Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Aijun Liu
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yang J, Wang X, Fan Y, Song X, Wu J, Fu Z, Li T, Huang Y, Tang Z, Meng S, Liu N, Chen J, Liu P, Yang L, Gong X, Chen C. Tropoelastin improves adhesion and migration of intra-articular injected infrapatellar fat pad MSCs and reduces osteoarthritis progression. Bioact Mater 2021; 10:443-459. [PMID: 34901559 PMCID: PMC8636741 DOI: 10.1016/j.bioactmat.2021.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Intra-articular injection of mesenchymal stem cells (MSCs) is a promising strategy for osteoarthritis (OA) treatment. However, more and more studies reveal that the injected MSCs have poor adhesion, migration, and survival in the joint cavity. A recent study shows that tropoelastin (TE) regulates adhesion, proliferation and phenotypic maintenance of MSCs as a soluble additive, indicating that TE could promote MSCs-homing in regenerative medicine. In this study, we used TE as injection medium, and compared it with classic media in MSCs intra-articular injection such as normal saline (NS), hyaluronic acid (HA), and platelet-rich plasma (PRP). We found that TE could effectively improve adhesion, migration, chondrogenic differentiation of infrapatellar fat pad MSCs (IPFP-MSCs) and enhance matrix synthesis of osteoarthritic chondrocytes (OACs) in indirect-coculture system. Moreover, TE could significantly enhance IPFP-MSCs adhesion via activation of integrin β1, ERK1/2 and vinculin (VCL) in vitro. In addition, intra-articular injection of TE-IPFP MSCs suspension resulted in a short-term increase in survival rate of IPFP-MSCs and better histology scores of rat joint tissues. Inhibition of integrin β1 or ERK1/2 attenuated the protective effect of TE-IPFP MSCs suspension in vivo. In conclusion, TE promotes performance of IPFP-MSCs and protects knee cartilage from damage in OA through enhancement of cell adhesion and activation of integrin β1/ERK/VCL pathway. Our findings may provide new insights in MSCs intra-articular injection for OA treatment.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yahan Fan
- Blood Transfusion Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - ZheXiong Tang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shuo Meng
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Na Liu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, 400038, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pingju Liu
- Department of Orthopedics, Zunyi Traditional Chinese Medicine Hospital, Zunyi, 563099, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
12
|
Costela Ruiz VJ, Melguizo Rodríguez L, Illescas Montes R, García Recio E, Arias Santiago S, Ruiz C, De Luna Bertos E. Human adipose tissue-derived mesenchymal stromal cells and their phagocytic capacity. J Cell Mol Med 2021; 26:178-185. [PMID: 34854223 PMCID: PMC8742185 DOI: 10.1111/jcmm.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have evidenced considerable therapeutic potential in numerous clinical fields, especially in tissue regeneration. The immunological characteristics of this cell population include the expression of Toll‐like receptors and mannose receptors, among others. The study objective was to determine whether MSCs have phagocytic capacity against different target particles. We isolated and characterized three human adipose tissue MSC (HAT‐MSC) lines from three patients and analysed their phagocytic capacity by flow cytometry, using fluorescent latex beads, and by transmission electron microscopy, using Escherichia coli, Staphylococcus aureus and Candida albicans as biological materials and latex beads as non‐biological material. The results demonstrate that HAT‐MSCs can phagocyte particles of different nature and size. The percentage of phagocytic cells ranged between 33.8% and 56.2% (mean of 44.37% ± 11.253) according to the cell line, and a high phagocytic index was observed. The high phagocytic capacity observed in MSCs, which have known regenerative potential, may offer an advance in the approach to certain local and systemic infections.
Collapse
Affiliation(s)
- Víctor J Costela Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Lucía Melguizo Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Rebeca Illescas Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Enrique García Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Salvador Arias Santiago
- Biosanitary Research Institute, ibs Granada, Granada, Spain.,Surgical Medical Dermatology and Venereology Service, Department of Medicine, Virgen de las Nieves Hospital, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain.,Institute of Neuroscience, Centre for Medical Research (CIBM), Health Technology Park (PTS), University of Granada, Granada, Spain
| | - Elvira De Luna Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| |
Collapse
|
13
|
Lan H, Hong W, Qian D, Peng F, Li H, Liang C, Du M, Gu J, Mai J, Bai B, Peng G. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered 2021; 12:6240-6250. [PMID: 34486477 PMCID: PMC8806632 DOI: 10.1080/21655979.2021.1969194] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the mechanism of osteoarthritis (OA) has been widely studied and the use of quercetin for OA therapy is well documented, the relevant characteristics of the microbiome and metabolism remain unclear. This study reports changes in the gut microbiota and metabolism during quercetin therapy for OA in a rat model and provides an integrative analysis of the biomechanism. In this study, the rats were categorized into 3 different groups: the OA model, quercetin treatment, and control groups. The OA rats was conducted using a monoiodoacetate (MIA) injection protocol. The rats in the quercetin group received daily intragastric administration of quercetin from day 1 to day 28. Stool samples were collected, and DNA was extracted. We used an integrated approach that combined the sequencing of whole 16S rRNA, short-chain fatty acid (SCFA) measurements and metabolomics analysis by mass spectrometry (MS) to characterize the functional impact of quercetin on the gut microbiota and metabolism in a rat model of OA. The use of quercetin partially abrogated intestinal flora disorder and reversed fecal metabolite abnormalities. Compared with the control rats, the OA rats showed differences at both the class level (Clostridia, Bacteroidia, and Bacilli) and the genus level (Lactobacillus and unidentified Ruminococcaceae). Acetic acid, propionic acid and 24 metabolites were significantly altered among the three groups. However, the changes were significantly abrogated in quercetin-treated OA rats. Consequently, this study provided important evidence regarding perturbations of the gut microbiome and the function of these changes in a potential new mechanism of quercetin treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Haiqing Li
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Min Du
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinlan Gu
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxuan Mai
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bo Bai
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Gongyong Peng
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Type II Collagen-Conjugated Mesenchymal Stem Cells Micromass for Articular Tissue Targeting. Biomedicines 2021; 9:biomedicines9080880. [PMID: 34440084 PMCID: PMC8389618 DOI: 10.3390/biomedicines9080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.
Collapse
|
15
|
Basnaev UI, Karakursakov NE, Mykhaylichenko VY, Kriventsov MA. Platelet-rich plasma administering in osteoarthrosis treatment. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background — According to the data from the published sources worldwide, about 10% of the world population suffers from osteoarthrosis. While searching for novel methods of osteoarthrosis treatment, we proposed administering intra-articular injections of autologous platelet-rich plasma.
The goal of this clinical study was to evaluate the effectiveness of autologous platelet-rich plasma injections in osteoarthrosis patient treatment.
Methods — This open-label parallel-group study was a pilot randomized controlled trial. An analysis of the treatment outcomes for 128 patients with knee joint arthrosis was performed. All patients were split among three groups, and subjects in two of those were receiving conventional treatment. Clinical efficacy was calculated from pain intensity, determined using Visual Analog Scale, Lequesne index and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Inflammatory response intensity was assessed by superoxide dismutase content and erythrocyte catalase activity.
Results — It was demonstrated that administering platelet-rich plasma allowed achieving tangible clinical and laboratory results without any side effects and with very few contraindications. The latter included, for instance, blocking inflammatory process in the joints, thereby inhibiting the oxidative stress, which is the most pathogenetically substantiated treatment of osteoarthrosis.
Conclusion — Thus, we have discovered that platelet-rich plasma injections had apparent anti-inflammatory and pain-relieving effects, along with inhibiting action of destructive processes in the cartilaginous tissue, hence improving life quality of the patients with osteoarthrosis.
Collapse
|
16
|
Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052619. [PMID: 33807695 PMCID: PMC7961389 DOI: 10.3390/ijms22052619] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative and chronic joint disease characterized by clinical symptoms and distortion of joint tissues. It primarily damages joint cartilage, causing pain, swelling, and stiffness around the joint. It is the major cause of disability and pain. The prevalence of OA is expected to increase gradually with the aging population and increasing prevalence of obesity. Many potential therapeutic advances have been made in recent years due to the improved understanding of the underlying mechanisms, diagnosis, and management of OA. Embryonic stem cells and induced pluripotent stem cells differentiate into chondrocytes or mesenchymal stem cells (MSCs) and can be used as a source of injectable treatments in the OA joint cavity. MSCs are known to be the most studied cell therapy products in cell-based OA therapy owing to their ability to differentiate into chondrocytes and their immunomodulatory properties. They have the potential to improve cartilage recovery and ultimately restore healthy joints. However, despite currently available therapies and advances in research, unfulfilled medical needs persist for OA treatment. In this review, we focused on the contents of non-cellular and cellular therapies for OA, and briefly summarized the results of clinical trials for cell-based OA therapy to lay a solid application basis for clinical research.
Collapse
|
17
|
Latest advances to enhance the therapeutic potential of mesenchymal stromal cells for the treatment of immune-mediated diseases. Drug Deliv Transl Res 2021; 11:498-514. [PMID: 33634433 DOI: 10.1007/s13346-021-00934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) present the capacity to secrete multiple immunomodulatory factors in response to their microenvironment. This property grants them a golden status among the novel alternatives to treat multiple diseases in which there is an unneeded or exaggerated immune response. However, important challenges still make difficult the clinical implementation of MSC-based therapies, being one of the most remarkable the lack of efficacy due to their transient immunomodulatory effects. To overcome this issue and boost the regulatory potential of MSCs, multiple strategies are currently being explored. Some of them consist of ex vivo pre-conditioning MSCs prior to their administration, including exposure to pro-inflammatory cytokines or to low oxygen concentrations. However, currently, alternative strategies that do not require such ex vivo manipulation are gaining special attention. Among them, the recreation of a three dimensional (3D) environment is remarkable. This approach has been reported to not only boost the immunomodulatory potential of MSCs but also increase their in vivo persistence and viability. The present work revises the therapeutic potential of MSCs, highlighting their immunomodulatory activity as a potential treatment for diseases caused by an exacerbated or unnecessary immune response. Moreover, it offers an updated vision of the most widely employed pre-conditioning strategies and 3D systems intended to enhance MSC-mediated immunomodulation, to conclude discussing the major challenges still to overcome in the field.
Collapse
|
18
|
Rahmadian R, Adly M, Dilogo IH, Revilla G. Clinical Application Prospect of Human Synovial Tissue Stem Cells from Osteoarthritis Grade IV Patients in Cartilage Regeneration. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a joint problem that continues to increase in prevalence as life expectancy increases. OA can affect any joint, especially those that support body weight such as the knee and hip joint. Although both primary and secondary OA have the same clinical symptoms, it can be caused by different etiologies. OA is no longer considered a degenerative disease, although age is still a major factor. Various attempts have been made to regenerate joint cartilage damaged by OA. The use of stem cells in OA therapy is a very promising opportunity. Stem cells are undifferentiated biological cells and are multipotent to differentiate into specific cells. In principle, local stem cells are the best source of stem cells to regenerate the surrounding tissue. The synovial membrane is a tissue in the joint that can regenerate. After synovectomy surgery, repair, and growth of synovial tissue occur rapidly. Synovial tissue as a source of stem cells only provides a limited amount. One source of synovial tissue that can be used is tissue taken from the total knee replacement process in grade 4 OA patients. However, it is necessary to prove the potential of synovial tissue stem cells originating from old-age donors.
Collapse
|
19
|
Current Nanoparticle-Based Technologies for Osteoarthritis Therapy. NANOMATERIALS 2020; 10:nano10122368. [PMID: 33260493 PMCID: PMC7760945 DOI: 10.3390/nano10122368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint disease that is characterized by joint pain and stiffness, and limitation of motion and the major cause of disability, which reduces life quality of patients and brings a large economic burden to the family and society. Current clinical treatment is mostly limited to symptomatic treatment aimed at pain alleviation and functional improvement, rather than suppressing the progression of OA. Nanotechnology is a promising strategy for the treatment of OA. In this review, we summarize the current experimental progress that focuses on technologies such as liposomes, micelles, dendrimers, polymeric nanoparticles (PNPs), exosomes, and inorganic nanoparticles (NPs) for their potential treatment of OA.
Collapse
|
20
|
Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. Biofactors 2020; 46:106-117. [PMID: 31625201 DOI: 10.1002/biof.1576] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
The cartilage tissue engineering associated with stem cell-related therapies is becoming very interesting since adult articular cartilage has limited intrinsic capacity for regeneration upon injury. Amniotic fluid stem cells (AFSC) have been shown to produce exosomes with growth factors and immunomodulating molecules that could stop tissue degradation and induce cartilage repair. Based on this state of the art, the main aim of this study was to explore the efficacy of the secreted exosomes, compared to their AFSC source, in MIA-induced animal model of osteoarthritis mimicking a chronic and degenerative process, where inflammation is also involved and lead to irreversible joint damage. Exosomes, obtained by the use of a commercial kit, prior to the injection in animal knee joints, were characterized for the presence of typical markers and HGF, TGFβ, and IDO. Then, analyses were performed by histology, immunohistochemistry, and behavioral scoring up to 3 weeks after the treatment. Exosome-treated defects showed enhanced pain tolerance level and improved histological scores than the AFSC-treated defects. Indeed by 3 weeks, TGFβ-rich exosome samples induced an almost complete restoration of cartilage with good surface regularity and with the characteristic of hyaline cartilage. Moreover, cells positive for resolving macrophage marker were more easily detectable into exosome-treated joints. Therefore, a modulating role for exosomes on macrophage polarization is conceivable, as demonstrated also by experiments performed on THP1 macrophages. In conclusion, this study demonstrates for the first time the efficacy of human AFSC exosomes in counteract cartilage damage, showing a positive correlation with their TGFβ content.
Collapse
Affiliation(s)
- Manuela Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Casciaro
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Cellular Signalling Laboratory Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Exosomes May Be the Potential New Direction of Research in Osteoarthritis Management. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7695768. [PMID: 31781642 PMCID: PMC6875272 DOI: 10.1155/2019/7695768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a joint degenerative disease, which is prominent in the middle-aged and elderly population, often leading to repeated pain in the joints of patients and seriously affecting the life quality of patients. At present, the treatment of OA mainly depends on the surgery and drug treatment. Nevertheless, these treatments still face many problems, such as surgical safety, complications, and drug side effects. Exosomes can be secreted and released by multiple cell types and have lipid bilayer membranes and contain abundant biological molecules, including proteins, lipids, and nucleic acids. Moreover, exosomes play a critical role in local and distal intercellular and intracellular communication. In recent years, several studies have found that exosomes can regulate the progression of OA and have a potential efficacy for OA treatment. Thus, in this article, we summarize and review the relevant research of exosomes in OA and emphasize the importance of exosomes in the development of OA.
Collapse
|
22
|
miR-940 regulates the inflammatory response of chondrocytes by targeting MyD88 in osteoarthritis. Mol Cell Biochem 2019; 461:183-193. [DOI: 10.1007/s11010-019-03601-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
|