1
|
Schaunaman N, Nichols T, Cervantes D, Hartsoe P, Ferrington DA, Chu HW. The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice. Viruses 2024; 16:1384. [PMID: 39339860 PMCID: PMC11437510 DOI: 10.3390/v16091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency.
Collapse
Affiliation(s)
| | - Taylor Nichols
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Diana Cervantes
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Paige Hartsoe
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | | | - Hong Wei Chu
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| |
Collapse
|
2
|
Schaunaman N, Cervantes D, Nichols T, Numata M, Ledford JG, Kraft M, Chu HW. Cooperation of immune regulators Tollip and surfactant protein A inhibits influenza A virus infection in mice. Respir Res 2024; 25:193. [PMID: 38702733 PMCID: PMC11068576 DOI: 10.1186/s12931-024-02820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Influenza A virus (IAV) infection is a significant risk factor for respiratory diseases, but the host defense mechanisms against IAV remain to be defined. Immune regulators such as surfactant protein A (SP-A) and Toll-interacting protein (Tollip) have been shown to be involved in IAV infection, but whether SP-A and Tollip cooperate in more effective host defense against IAV infection has not been investigated. METHODS Wild-type (WT), Tollip knockout (KO), SP-A KO, and Tollip/SP-A double KO (dKO) mice were infected with IAV for four days. Lung macrophages were isolated for bulk RNA sequencing. Precision-cut lung slices (PCLS) from WT and dKO mice were pre-treated with SP-A and then infected with IAV for 48 h. RESULTS Viral load was significantly increased in bronchoalveolar lavage (BAL) fluid of dKO mice compared to all other strains of mice. dKO mice had significantly less recruitment of neutrophils into the lung compared to Tollip KO mice. SP-A treatment of PCLS enhanced expression of TNF and reduced viral load in dKO mouse lung tissue. Pathway analysis of bulk RNA sequencing data suggests that macrophages from IAV-infected dKO mice reduced expression of genes involved in neutrophil recruitment, IL-17 signaling, and Toll-like receptor signaling. CONCLUSIONS Our data suggests that both Tollip and SP-A are essential for the lung to exert more effective innate defense against IAV infection.
Collapse
Affiliation(s)
- Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Diana Cervantes
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Taylor Nichols
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | | | - Monica Kraft
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA.
| |
Collapse
|
3
|
Chow Y, López‐Martínez C, Liles WC, Altemeier WA, Gharib SA, Hung CF. Toll-interacting protein inhibits transforming growth factor beta signaling in mouse lung fibroblasts. FASEB Bioadv 2024; 6:12-25. [PMID: 38223200 PMCID: PMC10782472 DOI: 10.1096/fba.2023-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFβ) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFβ and in the bleomycin model of experimental lung fibrosis using Tollip-/- mice. We hypothesize that if TOLLIP negatively regulates TGFβ signaling, then Tollip-/- mouse lung fibroblasts (MLFs) would have enhanced response to TGFβ treatment, and Tollip-/- mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFβ (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFβ-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, Tollip-/- mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFβ signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFβR1 Western blot. In response to TGFβ treatment, both WT and Tollip-/- MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, Tollip-/- MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of Acta2 by qPCR. Functionally, Tollip-/- MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFβ signaling in Tollip-/- through SMAD2 in vitro and in vivo. Tollip-/- mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, Tollip-/- mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.
Collapse
Affiliation(s)
- Yu‐Hua Chow
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Cecilia López‐Martínez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- Centro de Investigación Biomédica en Red (CIBER)‐Enfermedades respiratoriasMadridSpain
- Instituto Universitario de Oncología del Principado de AsturiasOviedoSpain
| | - W. Conrad Liles
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
- Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - William A. Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Chi F. Hung
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Center for Lung BiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Li W, Liu M, Chu M. Strategies targeting IL-33/ST2 axis in the treatment of allergic diseases. Biochem Pharmacol 2023; 218:115911. [PMID: 37981174 DOI: 10.1016/j.bcp.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Interleukin-33 (IL-33) and its receptor Serum Stimulation-2 (ST2, also called Il1rl1) are members of the IL-1 superfamily that plays a crucial role in allergic diseases. The interaction of IL-33 and ST2 mainly activates NF-κB signaling and MAPK signaling via the MyD88/IRAK/TRAF6 module, resulting in the production and secretion of pro-inflammatory cytokines. The IL-33/ST2 axis participates in the pathogenesis of allergic diseases, and therefore serves as a promising strategy for allergy treatment. In recent years, strategies blocking IL-33/ST2 through targeting regulation of IL-33 and ST2 or targeting the molecules involved in the signal transduction have been extensively studied mostly in animal models. These studies provide various potential therapeutic agents other than antibodies, such as small molecules, nucleic acids and traditional Chinese medicines. Herein, we reviewed potential targets and agents targeting IL-33/ST2 axis in the treatment of allergic diseases, providing directions for further investigations on treatments for IL-33 induced allergic diseases.
Collapse
Affiliation(s)
- Wenran Li
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Mengqi Liu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
5
|
Gottschalk I, Kölsch U, Wagner DL, Kath J, Martini S, Krüger R, Puel A, Casanova JL, Jezela-Stanek A, Rossi R, Chehadeh SE, Van Esch H, von Bernuth H. IRAK1 Duplication in MECP2 Duplication Syndrome Does Not Increase Canonical NF-κB-Induced Inflammation. J Clin Immunol 2023; 43:421-439. [PMID: 36319802 PMCID: PMC9628328 DOI: 10.1007/s10875-022-01390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Besides their developmental and neurological phenotype, most patients with MECP2/IRAK1 duplication syndrome present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of IRAK1 overexpression on the canonical NF-κB signaling as a possible cause for excessive inflammation in these patients. METHODS NF-κB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the IRAK1 phosphorylation and degradation as well as the IκBα degradation upon stimulation with IL-1β and TLR agonists in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with MECP2/IRAK1 duplication syndrome, respectively. RESULTS Both, MECP2/IRAK1-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon activation with IL-1β and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and controls had a similar response of cytokine production after stimulation with IL-1β and TLR4/2/6 agonists. Patients and controls had equivalent patterns of IRAK1 phosphorylation and degradation as well as IκBα degradation upon stimulation with IL-1β. CONCLUSION Patients with MECP2/IRAK1 duplication syndrome do not show increased canonical NF-κB signaling in immortalized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic suppression of this pathway.
Collapse
Affiliation(s)
- Ilona Gottschalk
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Uwe Kölsch
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | - Dimitrios L Wagner
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Campus Virchow-Klinikum, Berlin, Germany
| | - Jonas Kath
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefania Martini
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Rainer Rossi
- Childrens' Hospital Neukölln, Vivantes GmbH, Berlin, Germany
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany.
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Venkatasubramanian S, Pryor R, Plumlee C, Cohen SB, Simmons JD, Warr AJ, Graustein AD, Saha A, Hawn TR, Urdahl KB, Shah JA. TOLLIP Optimizes Dendritic Cell Maturation to Lipopolysaccharide and Mycobacterium tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:435-445. [PMID: 35803695 PMCID: PMC9339496 DOI: 10.4049/jimmunol.2200030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
TOLLIP is a central regulator of multiple innate immune signaling pathways, including TLR2, TLR4, IL-1R, and STING. Human TOLLIP deficiency, regulated by single-nucleotide polymorphism rs5743854, is associated with increased tuberculosis risk and diminished frequency of bacillus Calmette-Guérin vaccine-specific CD4+ T cells in infants. How TOLLIP influences adaptive immune responses remains poorly understood. To understand the mechanistic relationship between TOLLIP and adaptive immune responses, we used human genetic and murine models to evaluate the role of TOLLIP in dendritic cell (DC) function. In healthy volunteers, TOLLIP single-nucleotide polymorphism rs5743854 G allele was associated with decreased TOLLIP mRNA and protein expression in DCs, along with LPS-induced IL-12 secretion in peripheral blood DCs. As in human cells, LPS-stimulated Tollip -/- bone marrow-derived murine DCs secreted less IL-12 and expressed less CD40. Tollip was required in lung and lymph node-resident DCs for optimal induction of MHC class II and CD40 expression during the first 28 d of Mycobacterium tuberculosis infection in mixed bone marrow chimeric mice. Tollip -/- mice developed fewer M. tuberculosis-specific CD4+ T cells after 28 d of infection and diminished responses to bacillus Calmette-Guérin vaccination. Furthermore, Tollip -/- DCs were unable to optimally induce T cell proliferation. Taken together, these data support a model where TOLLIP-deficient DCs undergo suboptimal maturation after M. tuberculosis infection, impairing T cell activation and contributing to tuberculosis susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander J Warr
- University of Washington, Seattle, WA
- Baylor School of Medicine, Houston, TX; and
| | - Andrew D Graustein
- University of Washington, Seattle, WA
- VA Puget Sound Healthcare System, Seattle, WA
| | | | | | | | - Javeed A Shah
- University of Washington, Seattle, WA;
- VA Puget Sound Healthcare System, Seattle, WA
| |
Collapse
|
7
|
Schaunaman N, Dimasuay KG, Cervantes D, Li L, Numata M, Kraft M, Chu HW. Tollip Inhibits IL-33 Release and Inflammation in Influenza A Virus-Infected Mouse Airways. J Innate Immun 2022; 15:67-77. [PMID: 35760043 PMCID: PMC10643888 DOI: 10.1159/000525315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.
Collapse
Affiliation(s)
| | | | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
8
|
Peng H, Wang J, Song X, Huang J, Hua H, Wang F, Xu Z, Ma J, Gao J, Zhao J, Nong A, Huang D, Liang B. PHLDA1 Suppresses TLR4-Triggered Proinflammatory Cytokine Production by Interaction With Tollip. Front Immunol 2022; 13:731500. [PMID: 35237256 PMCID: PMC8882599 DOI: 10.3389/fimmu.2022.731500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Pleckstrin homology-like domain, family A, member 1 (PHLDA1) has been reported to be expressed in many mammalian tissues and cells. However, the functions and exact mechanisms of PHLDA1 remain unclear. In this study, we found that PHLDA1 expression was significantly altered in macrophages after exposure to lipopolysaccharide (LPS) in vitro, suggesting that PHLDA1 may be involved in the regulation of TLR4 signaling pathway activated by LPS. PHLDA1 attenuated the production of LPS-stimulated proinflammatory cytokines (TNF-α, IL-6, and IL-1β). Further research showed that the phosphorylation levels of some important signal molecules in TLR4/MyD88-mediated MAPK and NF-κB signaling pathways were reduced by PHLDA1, which in turn impaired the transcription factors NF-κB and AP1 nuclear translocation and their responsive element activities. Furthermore, we found that PHLDA1 repressed LPS-induced proinflammatory cytokine production via binding to Tollip which restrained TLR4 signaling pathway. A mouse model of endotoxemia was established to confirm the above similar results. In brief, our findings demonstrate that PHLDA1 is a negative regulator of LPS-induced proinflammatory cytokine production by Tollip, suggesting that PHLDA1 plays an anti-inflammatory role through inhibiting the TLR4/MyD88 signaling pathway with the help of Tollip. PHLDA1 may be a novel therapeutic target in treating endotoxemia.
Collapse
Affiliation(s)
- Hui Peng
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chao Shan Area of Guang Dong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Juping Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chao Shan Area of Guang Dong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Jiangni Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Haoming Hua
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Fanlu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Ziyun Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jing Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jie Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jing Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Anna Nong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chao Shan Area of Guang Dong Higher Education Institutes, Shantou University Medical College, Shantou, China
- *Correspondence: Bin Liang, ; Dongyang Huang,
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chao Shan Area of Guang Dong Higher Education Institutes, Shantou University Medical College, Shantou, China
- *Correspondence: Bin Liang, ; Dongyang Huang,
| |
Collapse
|
9
|
Schaunaman N, Dimasuay KG, Kraft M, Chu HW. Tollip interaction with STAT3: a novel mechanism to regulate human airway epithelial responses to type 2 cytokines. Respir Res 2022; 23:31. [PMID: 35172835 PMCID: PMC8848971 DOI: 10.1186/s12931-022-01941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toll-interacting protein (Tollip) is one of the key negative regulators in host innate immunity. Genetic variation of Tollip has been associated with less Tollip expression and poor lung function in asthmatic patients, but little is known about the role of Tollip in human airway type 2 inflammatory response, a prominent feature in allergic asthma. OBJECTIVE Our goal was to determine the role and underlying mechanisms of Tollip in human airway epithelial responses such as eotaxin to type 2 cytokine IL-13. METHODS Tollip deficient primary human airway epithelial cells from 4 healthy donors were generated by the gene knockdown approach and stimulated with IL-13 to measure activation of transcription factor STAT3, and eotaxin-3, an eosinophilic chemokine. RESULTS Following IL-13 treatment, Tollip deficient cells had significantly higher levels of STAT3 activation and eotaxin-3 than the scrambled control counterpart, which was reduced by a STAT3 inhibitor. Interaction between Tollip and STAT3 proteins was identified by co-immunoprecipitation. CONCLUSION Our results, for the first time, suggest that Tollip inhibits excessive eotaxin-3 induction by IL-13, in part through the interaction and inhibition of STAT3. These findings lend evidence to the potential of a STAT3 inhibitor as a therapeutic target, especially for type 2 inflammation-high asthmatics with Tollip deficiency.
Collapse
Affiliation(s)
| | | | - Monica Kraft
- grid.134563.60000 0001 2168 186XUniversity of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XDepartment of Medicine, College of Medicine, Tucson, 1501 Campbell Avenue, Office 6334, Tucson, AZ 85724 USA
| | - Hong Wei Chu
- grid.240341.00000 0004 0396 0728National Jewish Health, Denver, CO USA ,grid.240341.00000 0004 0396 0728Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO 80206 USA
| |
Collapse
|
10
|
Li X, Goobie GC, Gregory AD, Kass DJ, Zhang Y. Toll-Interacting Protein in Pulmonary Diseases. Abiding by the Goldilocks Principle. Am J Respir Cell Mol Biol 2021; 64:536-546. [PMID: 33233920 PMCID: PMC8086045 DOI: 10.1165/rcmb.2020-0470tr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TOLLIP (Toll-interacting protein) is an intracellular adaptor protein with diverse actions throughout the body. In a context- and cell type–specific manner, TOLLIP can function as an inhibitor of inflammation and endoplasmic-reticulum stress, an activator of autophagy, or a critical regulator of intracellular vacuole trafficking. The distinct functions of this protein have been linked to innate immune responses and lung epithelial-cell apoptosis. TOLLIP genetic variants have been associated with a variety of chronic lung diseases, including idiopathic pulmonary fibrosis, asthma, and primary graft dysfunction after lung transplantation, and with infections, such as tuberculosis, Legionella pneumonia, and respiratory viruses. TOLLIP exists in a delicate homeostatic balance, with both positive and negative effects on the trajectory of pulmonary diseases. This translational review summarizes the genetic and molecular associations that link TOLLIP to the development and progression of noninfectious and infectious pulmonary diseases. We highlight current limitations of in vitro and in vivo models in assessing the role of TOLLIP in these conditions, and we describe future approaches that will enable a more nuanced exploration of the role of TOLLIP in pulmonary conditions. There has been a surge in recent research evaluating the role of this protein in human diseases, but critical mechanistic pathways require further exploration. By understanding its biologic functions in disease-specific contexts, we will be able to determine whether TOLLIP can be therapeutically modulated to treat pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Gillian C Goobie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Clinician Investigator Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alyssa D Gregory
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
11
|
Herwald H, Egesten A. Once Upon a Time. J Innate Immun 2021; 13:195-196. [PMID: 34107491 DOI: 10.1159/000517261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
|
12
|
Li X, Goobie GC, Zhang Y. Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease. J Mol Med (Berl) 2020; 99:21-31. [PMID: 33128579 DOI: 10.1007/s00109-020-01999-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
Toll-interacting protein (TOLLIP) is a ubiquitous intracellular adaptor protein involved in multiple intracellular signaling pathways. It plays a key role in mediating inflammatory intracellular responses, promoting autophagy, and enabling vacuole transport within the cell. TOLLIP is being increasingly recognized for its role in disease pathophysiology through involvement in these three primary pathways. Recent research also indicates that TOLLIP is involved in nuclear-cytoplasmic transfer, although this area requires further exploration. TOLLIP is involved in the pathophysiologic pathways associated with neurodegenerative diseases, pulmonary diseases, cardiovascular disease, inflammatory bowel disease, and malignancy. We postulate that TOLLIP plays an integral role in the disease pathophysiology of other conditions involved in vacuole trafficking and autophagy. We suggest that future research in this field should investigate the role of TOLLIP in the pathogenesis of these multiple conditions. This research has the potential to inform disease mechanisms and identify novel opportunities for therapeutic advances in multiple disease processes.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Gillian C Goobie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Clinician Investigator Program, Department of Medicine, University of British Columbia, BC, V5Z-3X7, Vancouver, Canada
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Dimasuay KG, Schaunaman N, Martin RJ, Pavelka N, Kolakowski C, Gottlieb RA, Holguin F, Chu HW. Parkin, an E3 ubiquitin ligase, enhances airway mitochondrial DNA release and inflammation. Thorax 2020; 75:717-724. [PMID: 32499407 DOI: 10.1136/thoraxjnl-2019-214158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Parkin (Park2), an E3 ubiquitin ligase, is critical to maintain mitochondrial function by regulating mitochondrial biogenesis and degradation (mitophagy), but recent evidence suggests the involvement of Parkin in promoting inflammation. In the present study, we determined if Parkin regulates airway mitochondrial DNA (mtDNA) release and inflammatory responses to type 2 cytokine interleukin (IL)-13 and allergens. METHODS We measured Parkin mRNA expression in brushed bronchial epithelial cells and mtDNA release in the paired bronchoalveolar lavage fluid (BALF) from normal subjects and asthmatics. Parkin-deficient primary human tracheobronchial epithelial (HTBE) cells generated using the CRISPR-Cas9 system were stimulated with IL-13. To determine the in vivo function of Parkin, Parkin knockout (PKO) and wild-type (WT) mice were treated with IL-13 or allergen (house dust mite, HDM) in the presence or absence of mtDNA isolated from normal mouse lungs. RESULTS Parkin mRNA expression in asthmatic airway epithelium was upregulated, which positively correlated with the levels of released mtDNA in BALF. IL-13-stimulated HTBE cells increased Parkin expression. Moreover, IL-13 induced mtDNA release in Parkin-sufficient, but not in Parkin-deficient HTBE cells. PKO (vs WT) mice attenuated airway mtDNA release and inflammation following IL-13 or HDM treatments. mtDNA amplified airway inflammation in mice treated with IL-13 or HDM. Notably, Parkin also mediated mtDNA-induced exacerbation of airway inflammation. CONCLUSION Our research findings suggest that Parkin promotes mtDNA release and inflammation in airways, thus improving our understanding of the complex role of Parkin and mitochondrial dysfunction in asthma pathogenesis.
Collapse
Affiliation(s)
| | | | - Richard J Martin
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Nicole Pavelka
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Roberta A Gottlieb
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
14
|
Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune Function of Airway Epithelium. Front Cell Infect Microbiol 2020; 10:277. [PMID: 32637363 PMCID: PMC7316886 DOI: 10.3389/fcimb.2020.00277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Airway epithelial cells, which lines the respiratory mucosa is in direct contact with the environment. Airway epithelial cells are the primary target for rhinovirus and other inhaled pathogens. In response to rhinovirus infection, airway epithelial cells mount both pro-inflammatory responses and antiviral innate immune responses to clear the virus efficiently. Some of the antiviral responses include the expression of IFNs, endoplasmic reticulum stress induced unfolded protein response and autophagy. Airway epithelial cells also recruits other innate immune cells to establish antiviral state and resolve the inflammation in the lungs. In patients with chronic lung disease, these responses may be either defective or induced in excess leading to deficient clearing of virus and sustained inflammation. In this review, we will discuss the mechanisms underlying antiviral innate immunity and the dysregulation of some of these mechanisms in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Haleh Ganjian
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Charu Rajput
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Manal Elzoheiry
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Umadevi Sajjan
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
- Department of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Greene CM, Hiemstra PS. Innate Immunity of the Lung. J Innate Immun 2019; 12:1-3. [PMID: 31801141 PMCID: PMC6959115 DOI: 10.1159/000504621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
16
|
Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM. Year-Long Rhinovirus Infection is Influenced by Atmospheric Conditions, Outdoor Air Virus Presence, and Immune System-Related Genetic Polymorphisms. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:340-349. [PMID: 31350695 DOI: 10.1007/s12560-019-09397-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/12/2019] [Indexed: 05/28/2023]
|