1
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
[The role and mechanism of autophagy in lipopolysaccharide-induced inflammatory response of A549 cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1161-1170. [PMID: 36305119 PMCID: PMC9628005 DOI: 10.7499/j.issn.1008-8830.2202135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To study the role and mechanism of autophagy in lipopolysaccharide (LPS)-induced inflammatory response of human alveolar epithelial A549 cells. METHODS A549 cells were stimulated with LPS to establish a cell model of inflammatory response, and were then grouped (n=3 each) by concentration (0, 1, 5, and 10 μg/mL) and time (0, 4, 8, 12, and 24 hours). The A549 cells were treated with autophagy inhibitor 3-methyladenine (3-MA) to be divided into four groups (n=3 each): control, LPS, 3-MA, and 3-MA+LPS. The A549 cells were treated with autophagy agonist rapamycin (RAPA) to be divided into four groups (n=3 each): control, LPS, RAPA, and RAPA+LPS. The A549 cells were transfected with the Toll-like receptor 4 (TLR4) overexpression plasmid to be divided into four groups (n=3 each): TLR4 overexpression control, TLR4 overexpression, TLR4 overexpression control+LPS, and TLR4 overexpression+LPS. The A549 cells were transfected with TLR4 siRNA to be divided into four groups (n=3 each): TLR4 silencing control,TLR4 silencing, TLR4 silencing control+LPS, and TLR4 silencing+LPS. CCK-8 assay was used to measure cell viability. Western blot was used to measure the protein expression levels of inflammatory indicators (NLRP3, Caspase-1, and ASC), autophagic indicators (LC3B, Beclin-1, and P62), and TLR4. RESULTS After stimulation with 1 μg/mL LPS for 12 hours, the levels of inflammatory indicators (NLRP3, Caspase-1, and ASC), autophagic indicators (LC3B, Beclin-1, and P62), and TLR4 increased and reached the peak (P<0.05). Compared with the LPS group, the 3-MA+LPS group had reduced expression of autophagy-related proteins and increased expression of inflammation-related proteins and TLR4, while the RAPA+LPS group had increased expression of autophagy-related proteins and reduced inflammation-related proteins and TLR4 (P<0.05). The TLR4 overexpression+LPS group had reduced autophagy-related proteins and increased inflammation-related proteins compared with the TLR4 overexpression control+LPS group, and the TLR4 silencing+LPS group had increased autophagy-related proteins and reduced inflammation-related proteins compared with the TLR4 silencing control+LPS group (P<0.05). CONCLUSIONS In the LPS-induced inflammatory response of human alveolar epithelial A549 cells, autophagic flux has a certain protective effect on A549 cells. TLR4-mediated autophagic flux negatively regulates the LPS-induced inflammatory response of A549 cells.
Collapse
|
3
|
HU K, GAO Y, CHU S, CHEN N. Review of the effects and Mechanisms of microglial autophagy in ischemic stroke. Int Immunopharmacol 2022; 108:108761. [DOI: 10.1016/j.intimp.2022.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
|
4
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
5
|
Silwal P, Kim IS, Jo EK. Autophagy and Host Defense in Nontuberculous Mycobacterial Infection. Front Immunol 2021; 12:728742. [PMID: 34552591 PMCID: PMC8450401 DOI: 10.3389/fimmu.2021.728742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is critically involved in host defense pathways through targeting and elimination of numerous pathogens via autophagic machinery. Nontuberculous mycobacteria (NTMs) are ubiquitous microbes, have become increasingly prevalent, and are emerging as clinically important strains due to drug-resistant issues. Compared to Mycobacterium tuberculosis (Mtb), the causal pathogen for human tuberculosis, the roles of autophagy remain largely uncharacterized in the context of a variety of NTM infections. Compelling evidence suggests that host autophagy activation plays an essential role in the enhancement of antimicrobial immune responses and controlling pathological inflammation against various NTM infections. As similar to Mtb, it is believed that NTM bacteria evolve multiple strategies to manipulate and hijack host autophagy pathways. Despite this, we are just beginning to understand the molecular mechanisms underlying the crosstalk between pathogen and the host autophagy system in a battle with NTM bacteria. In this review, we will explore the function of autophagy, which is involved in shaping host–pathogen interaction and disease outcomes during NTM infections. These efforts will lead to the development of autophagy-based host-directed therapeutics against NTM infection.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
6
|
Egesten A, Herwald H. Modelers Modelling Models. J Innate Immun 2021; 13:61-62. [PMID: 33744878 DOI: 10.1159/000515202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
|
7
|
Chen RJ, Lee YH, Chen TH, Chen YY, Yeh YL, Chang CP, Huang CC, Guo HR, Wang YJ. Carbon monoxide-triggered health effects: the important role of the inflammasome and its possible crosstalk with autophagy and exosomes. Arch Toxicol 2021; 95:1141-1159. [PMID: 33554280 DOI: 10.1007/s00204-021-02976-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) has long been known as a "silent killer" because of its ability to bind hemoglobin (Hb), leading to reduced oxygen carrying capacity of Hb, which is the main cause of CO poisoning (COP) in humans. Emerging studies suggest that mitochondria is a key target of CO action that can impact key biological processes, including apoptosis, cellular proliferation, inflammation, and autophagy. Despite its toxicity at high concentrations, CO also exhibits cyto- and tissue-protective effects at low concentrations in animal models of organ injury and disease. Specifically, CO modulates the production of pro- or anti-inflammatory cytokines and mediators by regulating the NLRP3 inflammasome. Given that human diseases are strongly associated with inflammation, a deep understanding of the exact mechanism is helpful for treatment. Autophagic factors and inflammasomes interact in various situations, including inflammatory disease, and exosomes might function as the bridge between the inflammasome and autophagy activation. Thus, the interplay among autophagy, mitochondrial dysfunction, exosomes, and the inflammasome may play pivotal roles in the health effects of CO. In this review, we summarize the latest research on the beneficial and toxic effects of CO and their underlying mechanisms, focusing on the important role of the inflammasome and its possible crosstalk with autophagy and exosomes. This knowledge may lead to the development of new therapies for inflammation-related diseases and is essential for the development of new therapeutic strategies and biomarkers of COP.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Tzu-Hao Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Cheng Huang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.,Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.,Department of Senior Services, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan. .,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan. .,Occupational Safety, Health and Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Rao L, De La Rosa I, Xu Y, Sha Y, Bhattacharya A, Holtzman MJ, Gilbert BE, Eissa NT. Pseudomonas aeruginosa survives in epithelia by ExoS-mediated inhibition of autophagy and mTOR. EMBO Rep 2021; 22:e50613. [PMID: 33345425 PMCID: PMC7857434 DOI: 10.15252/embr.202050613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
One major factor that contributes to the virulence of Pseudomonas aeruginosa is its ability to reside and replicate unchallenged inside airway epithelial cells. The mechanism by which P. aeruginosa escapes destruction by intracellular host defense mechanisms, such as autophagy, is not known. Here, we show that the type III secretion system effector protein ExoS facilitates P. aeruginosa survival in airway epithelial cells by inhibiting autophagy in host cells. Autophagy inhibition is independent of mTOR activity, as the latter is also inhibited by ExoS, albeit by a different mechanism. Deficiency of the critical autophagy gene Atg7 in airway epithelial cells, both in vitro and in mouse models, greatly enhances the survival of ExoS-deficient P. aeruginosa but does not affect the survival of ExoS-containing bacteria. The inhibitory effect of ExoS on autophagy and mTOR depends on the activity of its ADP-ribosyltransferase domain. Inhibition of mTOR is caused by ExoS-mediated ADP ribosylation of RAS, whereas autophagy inhibition is due to the suppression of autophagic Vps34 kinase activity.
Collapse
Affiliation(s)
- Lang Rao
- Department of MedicineBaylor College of MedicineHoustonTXUSA
- Veterans Administration Long Beach Health Care System and University of California at IrvineIrvineCAUSA
- Southern California Institute for Research and EducationLong BeachCAUSA
| | | | - Yi Xu
- Department of MedicineBaylor College of MedicineHoustonTXUSA
| | - Youbao Sha
- Department of MedicineBaylor College of MedicineHoustonTXUSA
| | | | - Michael J Holtzman
- Department of Internal MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Brian E Gilbert
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
| | - N Tony Eissa
- Department of MedicineBaylor College of MedicineHoustonTXUSA
- Veterans Administration Long Beach Health Care System and University of California at IrvineIrvineCAUSA
| |
Collapse
|
9
|
Li M, Yan P, Shen X, Liu Z, Wang Q, Huang Y, Wu Y. Muscovy duck reovirus promotes virus replication by inhibiting autophagy-lysosomal degradation pathway. Vet Microbiol 2020; 253:108945. [PMID: 33373883 DOI: 10.1016/j.vetmic.2020.108945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 11/27/2022]
Abstract
Autophagy plays a momentous role in cellular responses against pathogens. However, the influence of the autophagy machinery on Muscovy duck reovirus (MDRV) infection is not yet confirmed. In this study, it was shown that MDRV infection significantly increased the number of autophagy-like vesicles in DF-1 cells under electron microscope and the LC3-I/LC3-II conversion, which was considered important indicators of autophagy. It was worth noting that the level of autophagy was positively correlated with MDRV replication. Further test results showed that MDRV-induced autophagy can promote virus replication in DF-1 cells, and both the envelope protein sigma A and non-structural protein sigma NS that play an important role in virus replication process can colocalize with the autophagosome marker molecule LC3-II by confocal immunofluorescence analysis. These results indicated that MDRV utilized the autophagosomes for replication. Through transfection of the dual fluorescent plasmid mcherry-EGFP-LC3 and fluorescence microscope observation, it was found that autophagosomes were more likely to fuse with lysosomes in MDRV-infected cells compared with the blank group. The phenomenon of pEGFP-LC3B fluorescent spot and LAMP1 co-localization appeared in MDRV infected cells, indicating that MDRV infection would promote the fusion of autophagosomes and the lysosomes. Conversely, accumulation of p62 was observed by immunoblotting, suggesting that autolysosomes does not exert effective degradation. MDRV infection triggered a incomplete autophagic response. Further studies found that the expression of LAMP1, a marker protein of late endosome/early lysosome, increased significantly in MDRV-infected cells, suggesting an increase in the number of immature lysosomes. In addition, the experiment detected the maturation of the lysosomal acid hydrolase Cathepsin D in the cells, and found that the expression of the 33 kDa mature form of Cathepsin D was significantly reduced after MDRV infection, indicating that MDRV inhibits the maturation of lysosomes. In general, MDRV infection induces autophagy of DF-1 cells, promotes the fusion of autophagosomes and lysosomes, inhibits autophagolysosome degradation, and promotes virus replication.
Collapse
Affiliation(s)
- Minghui Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, People's Republic of China
| | - Ping Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xia Shen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhenni Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Ganzhou Animal Husbandry Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
10
|
Broad and Complex Roles of NBR1-Mediated Selective Autophagy in Plant Stress Responses. Cells 2020; 9:cells9122562. [PMID: 33266087 PMCID: PMC7760648 DOI: 10.3390/cells9122562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Selective autophagy is a highly regulated degradation pathway for the removal of specific damaged or unwanted cellular components and organelles such as protein aggregates. Cargo selectivity in selective autophagy relies on the action of cargo receptors and adaptors. In mammalian cells, two structurally related proteins p62 and NBR1 act as cargo receptors for selective autophagy of ubiquitinated proteins including aggregation-prone proteins in aggrephagy. Plant NBR1 is the structural and functional homolog of mammalian p62 and NBR1. Since its first reports almost ten years ago, plant NBR1 has been well established to function as a cargo receptor for selective autophagy of stress-induced protein aggregates and play an important role in plant responses to a broad spectrum of stress conditions including heat, salt and drought. Over the past several years, important progress has been made in the discovery of specific cargo proteins of plant NBR1 and their roles in the regulation of plant heat stress memory, plant-viral interaction and special protein secretion. There is also new evidence for a possible role of NBR1 in stress-induced pexophagy, sulfur nutrient responses and abscisic acid signaling. In this review, we summarize these progresses and discuss the potential significance of NBR1-mediated selective autophagy in broad plant responses to both biotic and abiotic stresses.
Collapse
|
11
|
Sharma A, Vaghasiya K, Ray E, Gupta P, Gupta UD, Singh AK, Verma RK. Targeted Pulmonary Delivery of the Green Tea Polyphenol Epigallocatechin Gallate Controls the Growth of Mycobacterium tuberculosis by Enhancing the Autophagy and Suppressing Bacterial Burden. ACS Biomater Sci Eng 2020; 6:4126-4140. [PMID: 33463343 DOI: 10.1021/acsbiomaterials.0c00823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growing rates of tuberculosis (TB) superbugs are alarming, which has hampered the progress made to-date to control this infectious disease, and new drug candidates are few. Epigallocatechin gallate (EGCG), a major polyphenolic compound from green tea extract, shows powerful efficacy against TB bacteria in in vitro studies. However, the therapeutic efficacy of the molecule is limited due to poor pharmacokinetics and low bioavailability following oral administration. Aiming to improve the treatment outcomes of EGCG therapy, we investigated whether encapsulation and pulmonary delivery of the molecule would allow the direct targeting of the site of infection without compromising the activity. Microencapsulation of EGCG was realized by scalable spray-freeze-drying (SFD) technology, forming free-flowing micrometer-sized microspheres (epigallocatechin-3-gallate-loaded trehalose microspheres, EGCG-t-MS) of trehalose sugar. These porous microspheres exhibited appropriate aerodynamic parameters and high encapsulation efficiencies. In vitro studies demonstrated that EGCG-t-MS exhibited dose- and time-dependent killing of TB bacteria inside mouse macrophages by cellular mechanisms of lysosome acidification and autophagy induction. In a preclinical study on TB-infected Balb/c mice model (4 weeks of infection), we demonstrate that the microencapsulated EGCG, administered 5 days/week for 6 weeks by pulmonary delivery, showed exceptional efficacy compared to oral treatment of free drug. This treatment approach exhibited therapeutic outcomes by resolution of inflammation in the infected lungs and significant reduction (P < 0.05) in bacterial burden (up to ∼2.54 Log10 CFU) compared to untreated control and orally treated mice groups. No pathological granulomas, lesions, and inflammation were observed in the histopathological investigation, compared to untreated controls. The encouraging results of the study may pave the avenues for future use of EGCG in TB therapeutics by targeted pulmonary delivery and lead to its translational success.
Collapse
Affiliation(s)
- Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Umesh Datta Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Amit Kumar Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| |
Collapse
|
12
|
FitzGerald ES, Luz NF, Jamieson AM. Competitive Cell Death Interactions in Pulmonary Infection: Host Modulation Versus Pathogen Manipulation. Front Immunol 2020; 11:814. [PMID: 32508813 PMCID: PMC7248393 DOI: 10.3389/fimmu.2020.00814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of pulmonary infection, both hosts and pathogens have evolved a multitude of mechanisms to regulate the process of host cell death. The host aims to rapidly induce an inflammatory response at the site of infection, promote pathogen clearance, quickly resolve inflammation, and return to tissue homeostasis. The appropriate modulation of cell death in respiratory epithelial cells and pulmonary immune cells is central in the execution of all these processes. Cell death can be either inflammatory or anti-inflammatory depending on regulated cell death (RCD) modality triggered and the infection context. In addition, diverse bacterial pathogens have evolved many means to manipulate host cell death to increase bacterial survival and spread. The multitude of ways that hosts and bacteria engage in a molecular tug of war to modulate cell death dynamics during infection emphasizes its relevance in host responses and pathogen virulence at the host pathogen interface. This narrative review outlines several current lines of research characterizing bacterial pathogen manipulation of host cell death pathways in the lung. We postulate that understanding these interactions and the dynamics of intracellular and extracellular bacteria RCD manipulation, may lead to novel therapeutic approaches for the treatment of intractable respiratory infections.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
13
|
Greene CM, Hiemstra PS. Innate Immunity of the Lung. J Innate Immun 2019; 12:1-3. [PMID: 31801141 PMCID: PMC6959115 DOI: 10.1159/000504621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
14
|
Pu Q, Lin P, Wang Z, Gao P, Qin S, Cui L, Wu M. Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. PRECISION CLINICAL MEDICINE 2019; 2:166-182. [PMID: 31598387 PMCID: PMC6770284 DOI: 10.1093/pcmedi/pbz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and inflammasomes are shown to interact in various situations including
infectious disease, cancer, diabetes and neurodegeneration. Since multiple layers of
molecular regulators contribute to the interplay between autophagy and inflammasome
activation, the detail of such interplay remains largely unknown. Non-coding RNAs
(ncRNAs), which have been implicated in regulating an expanding list of cellular processes
including immune defense against pathogens and inflammatory response in cancer and
metabolic diseases, may join in the crosstalk between inflammasomes and autophagy in
physiological or disease conditions. In this review, we summarize the latest research on
the interlink among ncRNAs, inflammasomes and autophagy and discuss the emerging role of
these three in multiple signaling transduction pathways involved in clinical conditions.
By analyzing these intriguing interconnections, we hope to unveil the mechanism
inter-regulating these multiple processes and ultimately discover potential drug targets
for some refractory diseases.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Pan Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|