1
|
Boylan MA, Pincetic A, Romano G, Tatton N, Kenkare-Mitra S, Rosenthal A. Targeting Progranulin as an Immuno-Neurology Therapeutic Approach. Int J Mol Sci 2023; 24:15946. [PMID: 37958929 PMCID: PMC10647331 DOI: 10.3390/ijms242115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Immuno-neurology is an emerging therapeutic strategy for dementia and neurodegeneration designed to address immune surveillance failure in the brain. Microglia, as central nervous system (CNS)-resident myeloid cells, routinely perform surveillance of the brain and support neuronal function. Loss-of-function (LOF) mutations causing decreased levels of progranulin (PGRN), an immune regulatory protein, lead to dysfunctional microglia and are associated with multiple neurodegenerative diseases, including frontotemporal dementia caused by the progranulin gene (GRN) mutation (FTD-GRN), Alzheimer's disease (AD), Parkinson's disease (PD), limbic-predominant age-related transactivation response deoxyribonucleic acid binding protein 43 (TDP-43) encephalopathy (LATE), and amyotrophic lateral sclerosis (ALS). Immuno-neurology targets immune checkpoint-like proteins, offering the potential to convert aging and dysfunctional microglia into disease-fighting cells that counteract multiple disease pathologies, clear misfolded proteins and debris, promote myelin and synapse repair, optimize neuronal function, support astrocytes and oligodendrocytes, and maintain brain vasculature. Several clinical trials are underway to elevate PGRN levels as one strategy to modulate the function of microglia and counteract neurodegenerative changes associated with various disease states. If successful, these and other immuno-neurology drugs have the potential to revolutionize the treatment of neurodegenerative disorders by harnessing the brain's immune system and shifting it from an inflammatory/pathological state to an enhanced physiological/homeostatic state.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnon Rosenthal
- Alector, Inc., 131 Oyster Point Blvd, Suite 600, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Intartaglia D, Giamundo G, Conte I. Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS J 2022; 289:7199-7212. [PMID: 33993621 PMCID: PMC9786786 DOI: 10.1111/febs.16018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized monolayer of polarized, pigmented epithelial cells that resides between the vessels of the choriocapillaris and the neural retina. The RPE is essential for the maintenance and survival of overlying light-sensitive photoreceptors, as it participates in the formation of the outer blood-retinal barrier, phagocytosis, degradation of photoreceptor outer segment (POS) tips, maintenance of the retinoid cycle, and protection against light and oxidative stress. Autophagy is an evolutionarily conserved 'self-eating' process, designed to maintain cellular homeostasis. The daily autophagy demands in the RPE require precise gene regulation for the digestion and recycling of intracellular and POS components in lysosomes in response to light and stress conditions. In this review, we discuss selective autophagy and focus on the recent advances in our understanding of the mechanism of cell clearance in the RPE for visual function. Understanding how this catabolic process is regulated by both transcriptional and post-transcriptional mechanisms in the RPE will promote the recognition of pathological pathways in genetic disease and shed light on potential therapeutic strategies to treat visual impairments in patients with retinal disorders associated with lysosomal dysfunction.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy,Department of BiologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
3
|
Enzyme Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22179181. [PMID: 34502086 PMCID: PMC8431097 DOI: 10.3390/ijms22179181] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.
Collapse
|
4
|
Sampayo-Cordero M, Miguel-Huguet B, Malfettone A, Pérez-García JM, Llombart-Cussac A, Cortés J, Pardo A, Pérez-López J. The Value of Case Reports in Systematic Reviews from Rare Diseases. The Example of Enzyme Replacement Therapy (ERT) in Patients with Mucopolysaccharidosis Type II (MPS-II). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6590. [PMID: 32927819 PMCID: PMC7558586 DOI: 10.3390/ijerph17186590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Case reports are usually excluded from systematic reviews. Patients with rare diseases are more dependent on novel individualized strategies than patients with common diseases. We reviewed and summarized the novelties reported by case reports in mucopolysaccharidosis type II (MPS-II) patients treated with enzyme replacement therapy (ERT). METHODS We selected the case reports included in a previous meta-analysis of patients with MPS-II treated with ERT. Later clinical studies evaluating the same topic of those case reports were reported. Our primary aim was to summarize novelties reported in previous case reports. Secondary objectives analyzed the number of novelties evaluated in subsequent clinical studies and the time elapsed between the publication of the case report to the publication of the clinical study. RESULTS We identified 11 innovative proposals in case reports that had not been previously considered in clinical studies. Only two (18.2%) were analyzed in subsequent nonrandomized cohort studies. The other nine novelties (81.8%) were analyzed in later case reports (five) or were not included in ulterior studies (four) after more than five years from their first publication. CONCLUSIONS Case reports should be included in systematic reviews of rare disease to obtain a comprehensive summary of the state of research and offer valuable information for healthcare practitioners.
Collapse
Affiliation(s)
- Miguel Sampayo-Cordero
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
| | - Bernat Miguel-Huguet
- Department of Surgery, Hospital de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Andrea Malfettone
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Institute of Breast Cancer, Quiron Group, 08023 Barcelona, Spain
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Hospital Arnau de Vilanova, Universidad Católica de Valencia “San Vicente Mártir”, 46015 Valencia, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA; (A.M.); (J.M.P.-G.); (A.L.-C.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Institute of Breast Cancer, Quiron Group, 08023 Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Almudena Pardo
- Albiotech Consultores y Redacción Científica S.L., 28035 Madrid, Spain;
| | - Jordi Pérez-López
- Department of Internal Medicine, Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| |
Collapse
|
5
|
Solano M, Fainboim A, Politei J, Porras-Hurtado GL, Martins AM, Souza CFM, Koch FM, Amartino H, Satizábal JM, Horovitz DDG, Medeiros PFV, Honjo RS, Lourenço CM. Enzyme replacement therapy interruption in patients with Mucopolysaccharidoses: Recommendations for distinct scenarios in Latin America. Mol Genet Metab Rep 2020; 23:100572. [PMID: 32140416 PMCID: PMC7047015 DOI: 10.1016/j.ymgmr.2020.100572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, leading to the progressive accumulation of glycosaminoglycans (GAGs) and the subsequent compromising of tissues and organ malfunction. Although incurable, most types of MPS can be treated with enzyme replacement therapy (ERT), an approach that has had positive effects on the natural clinical evolution and which impact has been extensively investigated. Unfortunately, to date, there is relatively little data regarding the effects of ERT interruption, especially in Latin America, where such interruption may be frequent due to a variety of issues (for instance, difficulties involving logistics, reimbursement and/or payment withdrawal). Method A group of medical professionals from Latin America with experience in Genetics, Pediatrics and Neurology held an Advisory Board Meeting in the city of São Paulo, in October 2018, to discuss the issue of ERT interruptions in the region and recommendations health care professionals on how to deal with these interruptions and better assess the therapeutic effects of ERT. Conclusion Recommendations provided by the experts may support physicians in dealing with the most common reasons for ERT interruptions in Latin America. Most importantly, recommendations for data collection at specific timepoints (at baseline, throughout the treatment and during the interruption period of ERT and after its resumption) can significantly improve the collection of real world evidence on the effects of ERT and its interruptions, supporting health care professionals and policy makers in the decision making regarding the provision of these therapies for MPS patients. Positive impact of ERT is reported in MPS patients, but the effects of its interruption is overlooked. In Latin America, ERT interruption is not infrequent. A systematic evaluation the worsening of MPS progression is vital. The proposed structured data collection would help to evaluate patients and generate real word data. We encourage studies and experts discussions for a better understand the value of ERT for MPS patients in Latin America.
Collapse
Affiliation(s)
| | - Alejandro Fainboim
- Polivalent Day Hospital, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Juan Politei
- Laboratorio de Neuroquímica Dr. N. A. Chamoles, Fundación para el Estudio de Enfermedades Neurometabólicas (FESEN), Buenos Aires, Argentina
| | | | - Ana Maria Martins
- Reference Center of Metabolic Inborn Errors, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Hernan Amartino
- Servicio de Neurología Infantil y Clinica de Mucopolisacaridosis y transtornos relacionados, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Jose Maria Satizábal
- Department of Physiological Sciences, School of Basic Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Dafne D G Horovitz
- Medical Genetics Department, National Institute of Women, Children and Adolescents Health Fernandes Figueira/Fiocruz, Rio de Janeiro, Brazil
| | - Paula F V Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Brazil
| | - Rachel S Honjo
- Genetics Unit, Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Zhou J, Lin J, Leung WT, Wang L. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis Res 2020; 9:1-9. [PMID: 32201668 PMCID: PMC7062595 DOI: 10.5582/irdr.2020.01011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of rare lysosomal storage diseases (LSD) with multi-organic and severe symptoms. MPS occur worldwide in various forms though have relative a low incidence. The prevalent type of MPS varies among different continents, indicating that it may be associated with region and ethnic background. Undegraded glycosaminoglycans (GAGs) induced by deficiency of enzymes are the primary cause of MPS. Clinical features differ depending on the specific enzyme deficiency including coarse facial features, cognitive retardation, hepatosplenomegaly, hernias, kyphoscoliosis, corneal clouding, etc. Symptoms of different types are usually similar especially MPS I and II, but may have distinguishable features such as severe neurological problems in MPS III and hydrops fetails in MPS VII. These clinical features contribute to diagnosis, but early and precisely diagnosis in the asymptomatic stage is imperative for better outcomes. Novel approaches including urinary and blood GAG test, enzyme assay and gene test help to diagnose MPS and to determine its subtype. Hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) are conventional treatment for MPS, but are not effective at treating all MPS. Newer threatments, such as advanced ERT, gene therapy and substrate reduction therapy (SRT), improve therpeutic efficacy. In this review, we update information on the clinical manifestations, diagnosis, and treatment of the different forms of this disease in the hopes of stimulating further interest in MPS.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Lin
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- Address correspondence to:Ling Wang, Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200011, China. E-mail:
| |
Collapse
|