1
|
Sabatino A, Fiaccadori E, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, Jonckheer J, Cuerda C, Bischoff SC. ESPEN practical guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2024; 43:2238-2254. [PMID: 39178492 DOI: 10.1016/j.clnu.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND AND AIMS Hospitalized patients often have acute kidney disease (AKD) or chronic kidney disease (CKD), with important metabolic and nutritional consequences. Moreover, in case kidney replacement therapy (KRT) is started, the possible impact on nutritional requirements cannot be neglected. On this regard, the present guideline aims to provide evidence-based recommendations for clinical nutrition in hospitalized patients with KD. METHODS The standard operating procedure for ESPEN guidelines was used. Clinical questions were defined in both the PICO format, and organized in subtopics when needed, and in non-PICO questions for the more general topics. The literature search was from January 1st, 1999 until January 1st, 2020. Each question led to one or more recommendation/statement and related commentaries. Existing evidence was graded, as well as recommendations and statements were developed and agreed upon in a multistage consensus process. RESULTS The present guideline provides 32 evidence-based recommendations and 8 statements, defining how to assess nutritional status, how to define patients at risk, how to choose the route of feeding, and how to integrate nutrition with KRT. In the final online voting, a strong consensus was reached in 84% at least of recommendations and 100% of statements. CONCLUSION The presence of KD in hospitalized patients identifies a highly heterogeneous group of subjects with widely varying nutrient needs and intakes. Considering the high nutritional risk related with this clinical condition, an individualized approach consisting of nutritional status evaluation and monitoring, frequent evaluation of nutritional requirements, and careful integration with KRT should be planned to avoid both underfeeding and overfeeding. Practical recommendations and statements were developed, aiming at defining suggestions for everyday clinical practice in the individualization of nutritional support in this patient setting. Literature areas with scarce or without evidence were also identified, thus requiring further basic or clinical research.
Collapse
Affiliation(s)
- Alice Sabatino
- Division of Renal Medicine, Baxter Novum. Department of Clinical Science, Intervention and Technology. Karolinska Institute, Stockholm, Sweden.
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth De Waele
- Department of Intensive Care Medicine, Universitair Ziekenhuis Brussel, Department of Clinical Nutrition, Vitality Research Group, Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel (VUB), Brussels, Belgium
| | - Joop Jonckheer
- Department of intensive Care Medicine, University Hospital Brussel (UZB), Brussels, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Medicine. Universidad Complutense. Madrid, Spain
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Fishman G, Singer P. Metabolic and nutritional aspects in continuous renal replacement therapy. JOURNAL OF INTENSIVE MEDICINE 2023; 3:228-238. [PMID: 37533807 PMCID: PMC10391575 DOI: 10.1016/j.jointm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/04/2023]
Abstract
Nutrition is one of the foundations for supporting and treating critically ill patients. Nutritional support provides calories, protein, electrolytes, vitamins, and trace elements via the enteral or parenteral route. Acute kidney injury (AKI) is a common and devastating problem in critically ill patients and has significant metabolic and nutritional consequences. Moreover, renal replacement therapy (RRT), whatever the modality used, also profoundly impacts metabolism. RRT and of the extracorporeal circuit impede 'effect the evaluation of a patient's energy requirements by clinicians. Substrates added and removed within the extracorporeal treatment are not always taken into consideration, making treatment even more challenging. Furthermore, evidence on nutritional support during continuous renal replacement therapy (CRRT) is scarce, and there are no clinical guidelines for nutrition adaptations during CRRT in critically ill patients. Most recommendations are based on expert opinions. This review discusses the complex interaction between nutritional support and CRRT and presents some milestones for nutritional support in critically ill patients on CRRT.
Collapse
Affiliation(s)
- Guy Fishman
- Corresponding author at: General Intensive Care and Institute for Nutrition Research.
| | | |
Collapse
|
3
|
Teixeira JP, Mayer KP, Griffin BR, George N, Jenkins N, Pal CA, González-Seguel F, Neyra JA. Intensive Care Unit-Acquired Weakness in Patients With Acute Kidney Injury: A Contemporary Review. Am J Kidney Dis 2023; 81:336-351. [PMID: 36332719 PMCID: PMC9974577 DOI: 10.1053/j.ajkd.2022.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
Acute kidney injury (AKI) and intensive care unit-acquired weakness (ICU-AW) are 2 frequent complications of critical illness that, until recently, have been considered unrelated processes. The adverse impact of AKI on ICU mortality is clear, but its relationship with muscle weakness-a major source of ICU morbidity-has not been fully elucidated. Furthermore, improving ICU survival rates have refocused the field of intensive care toward improving long-term functional outcomes of ICU survivors. We begin our review with the epidemiology of AKI in the ICU and of ICU-AW, highlighting emerging data suggesting that AKI and AKI treated with kidney replacement therapy (AKI-KRT) may independently contribute to the development of ICU-AW. We then delve into human and animal data exploring the pathophysiologic mechanisms linking AKI and acute KRT to muscle wasting, including altered amino acid and protein metabolism, inflammatory signaling, and deleterious removal of micronutrients by KRT. We next discuss the currently available interventions that may mitigate the risk of ICU-AW in patients with AKI and AKI-KRT. We conclude that additional studies are needed to better characterize the epidemiologic and pathophysiologic relationship between AKI, AKI-KRT, and ICU-AW and to prospectively test interventions to improve the long-term functional status and quality of life of AKI survivors.
Collapse
Affiliation(s)
- J Pedro Teixeira
- Division of Nephrology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico; Center for Adult Critical Care, University of New Mexico, Albuquerque, New Mexico.
| | - Kirby P Mayer
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Benjamin R Griffin
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Naomi George
- Center for Adult Critical Care, University of New Mexico, Albuquerque, New Mexico; Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Nathaniel Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - C Anil Pal
- Division of Nephrology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Felipe González-Seguel
- Servicio de Medicina Física y Rehabilitación, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Javier A Neyra
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
4
|
Role of Fat-Free Mass Index on Amino Acid Loss during CRRT in Critically Ill Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020389. [PMID: 36837590 PMCID: PMC9966592 DOI: 10.3390/medicina59020389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Background and objectives: Amino acid (AA) loss is a prevalent unwanted effect of continuous renal replacement therapy (CRRT) in critical care patients, determined both by the machine set-up and individual characteristics. The aim of this study was to evaluate the bioelectrical impedance analysis-derived fat-free mass index (FFMI) effect on amino acid loss. Materials and methods: This was a prospective, observational, single sample study of critical care patients upon initiation of CRRT. AA loss during a 24 h period was estimated. Conventional determinants of AA loss (type and dose of CRRT, concentration of AA) and FFMI were entered into the multivariate regression analysis to determine the individual predictive value. Results: Fifty-two patients were included in the study. The average age was 66.06 ± 13.60 years; most patients had a high mortality risk with APAHCE II values of 22.92 ± 8.15 and SOFA values of 12.11 ± 3.60. Mean AA loss in 24 h was 14.73 ± 9.83 g. There was a significant correlation between the lost AA and FFMI (R = 0.445, B = 0.445 CI95%: 0.541-1.793 p = 0.02). Multivariate regression analysis revealed the independent predictors of lost AA to be the systemic concentration of AA (B = 6.99 95% CI:4.96-9.04 p = 0.001), dose of CRRT (B = 0.48 95% CI:0.27-0.70 p < 0.001) and FFMI (B = 0.91 95% CI:0.42-1.41 p < 0.001). The type of CRRT was eliminated in the final model due to co-linearity with the dose of CRRT. Conclusions: A substantial amount of AA is lost during CRRT. The amount lost is increased by the conventional factors as well as by higher FFMI. Insights from our study highlight the FFMI as a novel research object during CRRT, both when prescribing the dosage and evaluating the nutritional support needed.
Collapse
|
5
|
Miškinis J, Ramonas E, Gurevičienė V, Razumienė J, Dagys M, Ratautas D. Capacitance-Based Biosensor for the Measurement of Total Loss of L-Amino Acids in Human Serum during Hemodialysis. ACS Sens 2022; 7:3352-3359. [PMID: 36268654 PMCID: PMC9706805 DOI: 10.1021/acssensors.2c01342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we present a biosensor based on a gold nanoparticle (AuNP)-modified Pt electrode with an adjusted membrane containing cross-linked L-amino acid oxidase for the detection and quantification of total L-amino acids. The designed biosensor was tested and characterized using the capacitance-based principle, capacitance measurements after electrode polarization, disconnection from the circuit, and addition of the respective amount of the analyte. The method was implemented using the capacitive and catalytic properties of the Pt/AuNP electrode; nanostructures were able to store electric charge while at the same time catalyzing the oxidation of the redox reaction intermediate H2O2. In this way, the Pt/AuNP layer was charged after the addition of analytes, allowing for much more accurate measurements for samples with low amino acid concentrations. The combined biosensor electrode with the capacitance-based measurement method resulted in high sensitivity and a low limit of detection (LOD) for hydrogen peroxide (4.15 μC/μM and 0.86 μM, respectively) and high sensitivity, a low LOD, and a wide linear range for L-amino acids (0.73 μC/μM, 5.5 μM and 25-1500 μM, respectively). The designed biosensor was applied to measure the relative loss of amino acids in patients undergoing renal replacement therapy by analyzing amino acid levels in diluted serum samples before and after entering/leaving the hemodialysis apparatus. In general, the designed biosensor in conjunction with the proposed capacitance-based method was clinically tested and could also be applied for the detection of other analytes using analyte-specific oxidases.
Collapse
|
6
|
Nayak S, Prabhahar A, Chaudhary M, Bahuguna P, Yadav AK, Kumar V, Rathi M, Kohli HS, Gupta KL, Ramachandran R. Intermittent Online Postdilution Hemodiafiltration versus High-Flux Hemodialysis in Non-critical Acute Kidney Injury: A Pilot Randomized Controlled Trial. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2022; 33:674-687. [PMID: 37955459 DOI: 10.4103/1319-2442.389427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
The preferential use of convective modes of hemodialysis (HD) for targeting hyper-cytokinemia state in sepsis-related acute kidney injury (AKI) has been questioned for its efficacy. Several studies have used predilution hemodiafiltration (HDF) in critically ill AKI patients with mixed results. In this study, we compared intermittent online postdilution HDF with the standard high-flux (HF) intermittent HD in non-critically ill patients with community-acquired (CA) AKI. In this pilot study, stable patients with CA AKI and systemic inflammatory response syndrome were included and given either postdilution online-HDF (OL-HDF) or standard HF HD outside intensive care units. The primary objectives were to assess the feasibility of conducting the study at a larger scale and to detect the differential impact of convective clearance on the rates of independence from dialysis at discharge or after 30 days. Plasma cytokine clearance was assessed as a secondary objective. Eighty consecutive AKI patients were randomized to receive dialysis in one of the treatment arms after fulfilling the eligibility criteria. The baseline parameters of clinical severity, etiology, and indications of dialysis, plus the baseline plasma cytokine profiles, were comparable. Moreover, 83% in the control arm and 71.1% in the intervention arm became independent from dialysis at discharge or at 30 days (P = 0.189). No survival advantage of postdilution OL-HDF was observed (P >0.05). Similar plasma cytokine clearance levels were noted in both arms. The current study confirms the feasibility; however, it does not support the preferential use of postdilution OL-HDF over HF-HD in non-critical patients.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Sciences, Bathinda, Chandigarh, India
| | - Arun Prabhahar
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manju Chaudhary
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Bahuguna
- School of Health and Wellbeing, Health Economics and Health Technology Assessment, University of Glasgow, UK
| | - Ashok Kumar Yadav
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishan Lal Gupta
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Raja Ramachandran
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Nadamuni M, Venable AH, Huen SC. When a calorie isn't just a calorie: a revised look at nutrition in critically ill patients with sepsis and acute kidney injury. Curr Opin Nephrol Hypertens 2022; 31:358-366. [PMID: 35703214 PMCID: PMC9248034 DOI: 10.1097/mnh.0000000000000801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To discuss how nutritional management could be optimized to promote protective metabolism in sepsis and associated acute kidney injury. RECENT FINDINGS Recent evidence suggests that sepsis is a metabolically distinct critical illness and that certain metabolic alterations, such as activation of fasting metabolism, may be protective in bacterial sepsis. These findings may explain the lack of survival benefit in recent randomized controlled trials of nutrition therapy for critical illness. These trials are limited by cohort heterogeneity, combining both septic and nonseptic critical illness, and the use of inaccurate caloric estimates to determine energy requirements. These energy estimates are also unable to provide information on specific substrate preferences or the capacity for substrate utilization. As a result, high protein feeding beyond the capacity for protein synthesis could cause harm in septic patients. Excess glucose and insulin exposures suppress fatty acid oxidation, ketogenesis and autophagy, of which emerging evidence suggest are protective against sepsis associated organ damage such as acute kidney injury. SUMMARY Distinguishing pathogenic and protective sepsis-related metabolic changes are critical to enhancing and individualizing nutrition management for critically ill patients.
Collapse
Affiliation(s)
| | | | - Sarah C Huen
- Department of Internal Medicine
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Jonckheer J, Van Hoorn A, Oshima T, De Waele E. Bioenergetic Balance of Continuous Venovenous Hemofiltration, a Retrospective Analysis. Nutrients 2022; 14:nu14102112. [PMID: 35631253 PMCID: PMC9143940 DOI: 10.3390/nu14102112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Nutrition therapy guided by indirect calorimetry (IC) is the gold standard and is associated with lower morbidity and mortality in critically ill patients. When performing IC during continuous venovenous hemofiltration (CVVH), the measured VCO2 should be corrected for the exchanged CO2 to calculate the ‘true’ Resting Energy Expenditure (REE). After the determination of the true REE, the caloric prescription should be adapted to the removal and addition of non-intentional calories due to citrate, glucose, and lactate in dialysis fluids to avoid over- and underfeeding. We aimed to evaluate this bioenergetic balance during CVVH and how nutrition therapy should be adapted. (2) Methods: This post hoc analysis evaluated citrate, glucose, and lactate exchange. Bioenergetic balances were calculated based on these values during three different CVVH settings: low dose with citrate, high dose with citrate, and low dose without citrate. The caloric load of these non-intentional calories during a CVVH-run was compared to the true REE. (3) Results: We included 19 CVVH-runs. The bioenergetic balance during the low dose with citrate was 498 ± 110 kcal/day (range 339 to 681 kcal/day) or 26 ± 9% (range 14 to 42%) of the true REE. During the high dose with citrate, it was 262 ± 222 kcal/day (range 56 to 262 kcal/day) or 17 ± 11% (range 7 to 32%) of the true REE. During the low dose without citrate, the bioenergetic balance was −189 ± 77 kcal/day (range −298 to −92 kcal/day) or −13 ± 8% (range −28 to −5%) of the true REE. (4) Conclusions: Different CVVH settings resulted in different bioenergetic balances ranging from −28% up to +42% of the true REE depending on the CVVH fluids chosen. When formulating a caloric prescription during CVVH, an individual approach considering the impact of these non-intentional calories is warranted.
Collapse
Affiliation(s)
- Joop Jonckheer
- Department of Critical Care, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Belgium;
- Correspondence:
| | - Alex Van Hoorn
- Department of Critical Care, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Belgium;
| | - Taku Oshima
- Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City 260-8677, Japan;
| | - Elisabeth De Waele
- Departement of Nutrition, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Belgium;
| |
Collapse
|
9
|
Hung KY, Chen ST, Chu YY, Ho G, Liu WL. Nutrition support for acute kidney injury 2020-consensus of the Taiwan AKI task force. J Chin Med Assoc 2022; 85:252-258. [PMID: 34772861 DOI: 10.1097/jcma.0000000000000662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We used evidence-based medicine to suggest guidelines of nutritional support for Taiwanese patients with acute kidney injury (AKI). METHODS Our panel reviewed the medical literature in group meetings to reach a consensus on answering clinical questions related to the effects of the nutritional status, energy/protein intake recommendations, timing of enteral, and parenteral nutrition supplementation. RESULTS Markers of the nutritional status of serum albumin, protein intake, and nitrogen balance had positive relationships with low mortality. A forest plot of the comparison of mortality between a body mass index (BMI) of <18.5 and ≥18.5 kg/m2 was produced using data from seven observational studies which showed that a lower BMI was associated with higher mortality. The energy recommendation of 20-30 kcal/kg body weight (BW)/day was determined to be valid for all stages of AKI. The protein recommendation for noncatabolic AKI patients is 0.8-1.0 g/kg BW/day, and 1.2-2.0 g/kg BW/day is the same as that for the underlying disease that is causing AKI. Protein intake should be at least 1.5 g/kg BW/day and up to 2.5 g/kg BW/day in patients receiving continuous renal replacement therapy. Considering that patients with AKI often have other critical comorbid situations, early enteral nutrition (EN) is suggested, and parenteral nutrition is needed when >60% energy and protein requirements cannot be met via the enteral route in 7-10 days. Low energy intake is suggested in critically ill patients with AKI, which should gradually be increased to meet 80%-100% of the energy target. CONCLUSION By examining evidence-based research, we provide practicable nutritional guidelines for AKI patients.
Collapse
Affiliation(s)
- Kai-Yin Hung
- Department of Nutritional Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Shu-Tzu Chen
- Department of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yu-Ying Chu
- Department of Nutritional Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Guanjin Ho
- Critical Care Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Wei-Lun Liu
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| |
Collapse
|
10
|
Berger MM, Broman M, Forni L, Ostermann M, De Waele E, Wischmeyer PE. Nutrients and micronutrients at risk during renal replacement therapy: a scoping review. Curr Opin Crit Care 2021; 27:367-377. [PMID: 34039873 PMCID: PMC8270509 DOI: 10.1097/mcc.0000000000000851] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Malnutrition is frequent in patients with acute kidney injury. Nutrient clearance during renal replacement therapy (RRT) potentially contributes to this complication. Although losses of amino acid, trace elements and vitamins have been described, there is no clear guidance regarding the role of micronutrient supplementation. RECENT FINDINGS A scoping review was conducted with the aim to review the existing literature on micronutrients status during RRT: 35 publications including data on effluent losses and blood concentrations were considered relevant and analysed. For completeness, we also included data on amino acids. Among trace elements, negative balances have been shown for copper and selenium: low blood levels seem to indicate potential deficiency. Smaller size water soluble vitamins were found in the effluent, but not larger size liposoluble vitamins. Low blood values were frequently reported for thiamine, folate and vitamin C, as well as for carnitine. All amino acids were detectable in effluent fluid. Duration of RRT was associated with decreasing blood values. SUMMARY Losses of several micronutrients and amino acids associated with low blood levels represent a real risk of deficiency for vitamins B1 and C, copper and selenium: they should be monitored in prolonged RRT. Further Research is urgently required as the data are insufficient to generate strong conclusions and prescription recommendations for clinical practice.
Collapse
Affiliation(s)
- Mette M. Berger
- Lausanne University Hospital (CHUV) & University of Lausanne, Lausanne, Switzerland
| | - Marcus Broman
- Perioperative and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Lui Forni
- Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Department of Clinical & Experimental Medicine, School of Biosciences & Medicine, University of Surrey, Surrey
| | - Marlies Ostermann
- King's College London, Guy's & St Thomas’ Foundation Hospital, Department of Critical Care, London, UK
| | | | - Paul E. Wischmeyer
- Department of Anesthesiology and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Fiaccadori E, Sabatino A, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, Jonckheer J, Singer P, Cuerda C. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40:1644-1668. [PMID: 33640205 DOI: 10.1016/j.clnu.2021.01.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute kidney disease (AKD) - which includes acute kidney injury (AKI) - and chronic kidney disease (CKD) are highly prevalent among hospitalized patients, including those in nephrology and medicine wards, surgical wards, and intensive care units (ICU), and they have important metabolic and nutritional consequences. Moreover, in case kidney replacement therapy (KRT) is started, whatever is the modality used, the possible impact on nutritional profiles, substrate balance, and nutritional treatment processes cannot be neglected. The present guideline is aimed at providing evidence-based recommendations for clinical nutrition in hospitalized patients with AKD and CKD. Due to the significant heterogeneity of this patient population as well as the paucity of high-quality evidence data, the present guideline is to be intended as a basic framework of both evidence and - in most cases - expert opinions, aggregated in a structured consensus process, in order to update the two previous ESPEN Guidelines on Enteral (2006) and Parenteral (2009) Nutrition in Adult Renal Failure. Nutritional care for patients with stable CKD (i.e., controlled protein content diets/low protein diets with or without amino acid/ketoanalogue integration in outpatients up to CKD stages four and five), nutrition in kidney transplantation, and pediatric kidney disease will not be addressed in the present guideline.
Collapse
Affiliation(s)
- Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alice Sabatino
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Adamasco Cupisti
- Nephrology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth De Waele
- Intensive Care, University Hospital Brussels (UZB), Department of Nutrition, UZ Brussel, Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel (VUB), Bruxelles, Belgium
| | | | - Pierre Singer
- General Intensive Care Department and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
12
|
Siew ED, Fissell WH. Renal Replacement Therapy in the ICU: The Collateral of Habit. Chest 2020; 158:1303-1304. [PMID: 33036073 DOI: 10.1016/j.chest.2020.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Edward D Siew
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, TN; Veterans Administration Tennessee Valley Healthcare System, Nashville, TN.
| | - William H Fissell
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, TN
| |
Collapse
|
13
|
Serum Levels and Removal by Haemodialysis and Haemodiafiltration of Tryptophan-Derived Uremic Toxins in ESKD Patients. Int J Mol Sci 2020; 21:ijms21041522. [PMID: 32102247 PMCID: PMC7073230 DOI: 10.3390/ijms21041522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Tryptophan is an essential dietary amino acid that originates uremic toxins that contribute to end-stage kidney disease (ESKD) patient outcomes. We evaluated serum levels and removal during haemodialysis and haemodiafiltration of tryptophan and tryptophan-derived uremic toxins, indoxyl sulfate (IS) and indole acetic acid (IAA), in ESKD patients in different dialysis treatment settings. This prospective multicentre study in four European dialysis centres enrolled 78 patients with ESKD. Blood and spent dialysate samples obtained during dialysis were analysed with high-performance liquid chromatography to assess uremic solutes, their reduction ratio (RR) and total removed solute (TRS). Mean free serum tryptophan and IS concentrations increased, and concentration of IAA decreased over pre-dialysis levels (67%, 49%, −0.8%, respectively) during the first hour of dialysis. While mean serum total urea, IS and IAA concentrations decreased during dialysis (−72%, −39%, −43%, respectively), serum tryptophan levels increased, resulting in negative RR (−8%) towards the end of the dialysis session (p < 0.001), despite remarkable Trp losses in dialysate. RR and TRS values based on serum (total, free) and dialysate solute concentrations were lower for conventional low-flux dialysis (p < 0.001). High-efficiency haemodiafiltration resulted in 80% higher Trp losses than conventional low-flux dialysis, despite similar neutral Trp RR values. In conclusion, serum Trp concentrations and RR behave differently from uremic solutes IS, IAA and urea and Trp RR did not reflect dialysis Trp losses. Conventional low-flux dialysis may not adequately clear Trp-related uremic toxins while high efficiency haemodiafiltration increased Trp losses.
Collapse
|