1
|
Nguyen VP, Hu J, Zhe J, Chen EY, Yang D, Paulus YM. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging of USH2A knockout rabbits. Sci Rep 2023; 13:22071. [PMID: 38086867 PMCID: PMC10716268 DOI: 10.1038/s41598-023-48872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Usher syndrome type 2A (USH2A) is a genetic disorder characterized by retinal degeneration and hearing loss. To better understand the pathogenesis and progression of this syndrome, animal models such as USH2A knockout (USH2AKO) rabbits have been developed. In this study, we employed multimodal imaging techniques, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), fundus autofluorescence (FAF), fluorescein angiography (FA), and indocyanine green angiography (ICGA) imaging to evaluate the retinal changes in the USH2AKO rabbit model. Twelve New Zealand White rabbits including USH2AKO and wild type (WT) were used for the experiments. Multimodal imaging was implemented at different time points over a period of 12 months to visualize the progression of retinal changes in USH2AKO rabbits. The results demonstrate that ellipsoid zone (EZ) disruption and degeneration, key features of Usher syndrome, began at the age of 4 months old and persisted up to 12 months. The EZ degeneration areas were clearly observed on the FAF and OCT images. The FAF images revealed retinal pigment epithelium (RPE) degeneration, confirming the presence of the disease phenotype in the USH2AKO rabbits. In addition, PAM images provided high-resolution and high image contrast of the optic nerve and the retinal microvasculature, including retinal vessels, choroidal vessels, and capillaries in three-dimensions. The quantification of EZ fluorescent intensity using FAF and EZ thickness using OCT provided comprehensive quantitative data on the progression of degenerative changes over time. This multimodal imaging approach allowed for a comprehensive and non-invasive assessment of retinal structure, microvasculature, and degenerative changes in the USH2AKO rabbit model. The combination of PAM, OCT, and fluorescent imaging facilitated longitudinal monitoring of disease progression and provided valuable insights into the pathophysiology of USH2A syndrome. These findings contribute to the understanding of USH2A syndrome and may have implications for the development of diagnostic and therapeutic strategies for affected individuals. The multimodal imaging techniques employed in this study offer a promising platform for preclinical evaluation of potential treatments and may pave the way for future clinical applications in patients with Usher syndrome.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eugene Y Chen
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA
| | - Dongshan Yang
- Department of Internal Medicine, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, 2800 Plymouth Rd NCRC B26-355S, Ann Arbor, MI, 48109-2800, USA.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
2
|
Luo D, Xiong X, Chen W, Huang R. Design of two-dimensional piezoelectric laser scanner system for precision laser beam steering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:105003. [PMID: 37791864 DOI: 10.1063/5.0138139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
In this work, a large aperture two-dimensional (2D) piezoelectric laser scanner system with an onboard sensor to detect the scanner's deflection angle has been designed and prototyped. The proposed 2D laser scanner is driven using three amplified piezoelectric actuators assembled in an equilateral triangle configuration to provide structural stability and compactness. To overcome the nonlinearity that derives from the hysteresis effect of the piezoelectric actuators, the tip-tilt principle and the control schemes of the 2D scanner are analyzed and compared. Thanks to the combination of onboard sensing of the deflection angle of the scanner with the closed-loop control capability, this 2D scanner's features include a large aperture and high accuracy. The experimental results demonstrate that closed-loop control achieves higher control accuracy than the open-loop control approach, leading to a reduction in the relative error from 2%-4% to ∼0.5%, while the deflection angle tracking accuracy lies approximately within the 40 μrad range.
Collapse
Affiliation(s)
- Dong Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xiaogang Xiong
- School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Ruining Huang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
3
|
Deen AD, Van Beusekom HMM, Pfeiffer T, Stam M, Kleijn DD, Wentzel J, Huber R, Van Der Steen AFW, Soest GV, Wang T. Spectroscopic thermo-elastic optical coherence tomography for tissue characterization. BIOMEDICAL OPTICS EXPRESS 2022; 13:1430-1446. [PMID: 35414978 PMCID: PMC8973171 DOI: 10.1364/boe.447911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Optical imaging techniques that provide free space, label free imaging are powerful tools in obtaining structural and biochemical information in biological samples. To date, most of the optical imaging technologies create images with a specific contrast and require multimodality integration to add additional contrast. In this study, we demonstrate spectroscopic Thermo-elastic Optical Coherence Tomography (TE-OCT) as a potential tool in tissue identification. TE-OCT creates images based on two different forms of contrast: optical reflectance and thermo-elastic deformation. TE-OCT uses short laser pulses to induce thermo-elastic tissue deformation and measures the resulting surface displacement using phase-sensitive OCT. In this work we characterized the relation between thermo-elastic displacement and optical absorption, excitation, fluence and illumination area. The experimental results were validated with a 2-dimensional analytical model. Using spectroscopic TE-OCT, the thermo-elastic spectra of elastic phantoms and tissue components in coronary arteries were extracted. Specific tissue components, particularly lipid, an important biomarker for identifying atherosclerotic lesions, can be identified in the TE-OCT spectral response. As a label-free, free-space, dual-contrast, all-optical imaging technique, spectroscopic TE-OCT holds promise for biomedical research and clinical pathology diagnosis.
Collapse
Affiliation(s)
- Aaron Doug Deen
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| | - Heleen M. M. Van Beusekom
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| | - Tom Pfeiffer
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Mathijs Stam
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| | - Dominique De Kleijn
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Antonius F. W. Van Der Steen
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
- Department Imaging Science and Technology, Delft University of Technology, Delft 2600 AA, The Netherlands
| | - Gijs Van Soest
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| | - Tianshi Wang
- Department of Cardiology, Erasmus University Medical Center, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| |
Collapse
|
4
|
Van Phuc N, Folz J, Li Y, Henry J, Zhang W, Qian T, Wang X, Paulus YM. Indocyanine green-enhanced multimodal photoacoustic microscopy and optical coherence tomography molecular imaging of choroidal neovascularization. JOURNAL OF BIOPHOTONICS 2021; 14:e202000458. [PMID: 33502124 PMCID: PMC8262643 DOI: 10.1002/jbio.202000458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 05/17/2023]
Abstract
Photoacoustic microscopy (PAM) has great potential for visualization of the microvasculature with high spatial resolution and contrast. Early detection and differentiation of newly developed blood vessels named choroidal neovascularization (CNV) from normal vasculature remains a challenge in ophthalmology. Exogenous contrast agents can assist with improving PAM sensitivity, leading to differentiation of CNV. Here, an FDA-approved indocyanine green (ICG) was utilized as a PAM contrast agent. ICG was conjugated with RGD peptides, allowing the ICG to bind to the integrin expressed in CNV. Molecular PAM imaging showed that ICG-RGD can target CNV for up to 5 days post intravenous administration in living rabbits with a model of CNV. The PAM image sensitivity and image contrast were significantly enhanced by 15-fold at 24 h post-injection. Overall, the presented approach demonstrates the possibility of targeted ICG to be employed in PAM molecular imaging, allowing more precise evaluation of neovascularization.
Collapse
Affiliation(s)
- Nguyen Van Phuc
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- NTT-Hi Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Jeff Folz
- Biophysics Program, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Thomas Qian
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
5
|
Xin X, Zhu Y, Xi R, Hao Y. Establishing a mouse model of choroidal neovascularization to study the therapeutic effect of levotinib and its mechanism. Saudi J Biol Sci 2020; 27:2491-2497. [PMID: 32884431 PMCID: PMC7451724 DOI: 10.1016/j.sjbs.2020.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Objective To study the therapeutic effect and mechanism of levotinib on choroidal neovascularization (CNV) in mice. Methods 45 healthy C57BL/6 mice were selected and randomly divided into three groups: control group (group A), model group (group B) and levotinib group (group C). The model of CNV in mice was established. The fluorescence leakage of choroidal lesions in mice was observed by fundus fluorescein angiography. The morphological changes of retinal vessels in mice were observed by retinal slice preparation, the pathological changes of eyeball tissues in mice were observed by hematoxylin-eosin (HE) staining, the expression of vascular endothelial growth factor (VEGF) in mice retina was detected by real-time quantitative fluorescence PCR, and the protein expression of VEGF in mice retina was detected by Western blotting. Result On the 7th, 14th and 21st day after modeling, compared with group B, the fluorescence leakage area of group C mice was significantly reduced, and the difference was statistically significant (P < 0.05). The morphology of retinal vessels in group A was normal. In group B, the retinal vessels showed large areas of ischemia without perfusion and abundant neovascularization clusters and capillaries. Compared with group B, the morphology of retinal vessels in group C was significantly improved. Group A mice had normal eyeball structure, group B mice had visible spindle-like damage to the inner and outer retina, while group C mice had significantly less spindle-like damage than group B. Compared with group A, group B mice had significantly higher expression of retinal VEGF and the difference was statistically significant (P < 0.05), but compared with group B mice, the expression of VEGF in the retina of mice in group C was significantly decreased, and the difference was statistically significant (P < 0.05). Compared with group A, the expression of VEGF in retina of group B mice was significantly increased, and the difference was statistically significant (P < 0.05). Compared with group B, the expression of VEGF in retina of group C mice was significantly decreased, and the difference was statistically significant (P < 0.05). Conclusion Levatinib has obvious therapeutic effect on CNV, which may be achieved by inhibiting the high expression of VEGF in CNV.
Collapse
Affiliation(s)
- Xiaonan Xin
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yueyu Zhu
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ruijie Xi
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yuhua Hao
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|