1
|
Zhang T, Fang J, Hu J, Kong Y, Jiang R, Wang H, Yang G, Yao G. Downregulation of CASC15 attenuates the symptoms of polycystic ovary syndrome by affecting granulosa cell proliferation and regulating ovarian follicular development. Mol Cell Endocrinol 2024; 592:112322. [PMID: 38942281 DOI: 10.1016/j.mce.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a type of follicular dysplasia with an unclear pathogenesis, posing certain challenges in its diagnosis and treatment. Cancer susceptibility candidate 15 (CASC15), a long non-coding RNA closely associated with tumour development, has been implicated in PCOS onset and development. Therefore, this study aimed to investigate the molecular mechanisms underlying PCOS by downregulating CASC15 expression in both in vitro and in vivo models. We explored the potential regulatory relationship between CASC15 expression and PCOS by examining cell proliferation, cell cycle dynamics, cell autophagy, steroid hormone secretion capacity, and overall ovarian function in mice. We found that CASC15 expression in granulosa cells derived from patients with PCOS was significantly higher than those of the normal group (P < 0.001). In vitro experiments revealed that downregulating CASC15 significantly inhibited cell proliferation, promoted apoptosis, induced G1-phase cell cycle arrest, and influenced cellular autophagy levels. Moreover, downregulating CASC15 affected the follicular development process in newborn mouse ovaries. In vivo studies in mice demonstrated that disrupting CASC15 expression improved PCOS-related symptoms such as polycystic changes and hyperandrogenism, and significantly affected ovulation induction and embryo implantation in pregnant mice. Overall, CASC15 was highly expressed in granulosa cells of patients with PCOS and its downregulation improved PCOS-related symptoms by influencing granulosa cell function and follicular development in mice.
Collapse
Affiliation(s)
- Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junnan Fang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Fischer KD, Tiwari S, Thier B, Qiu LC, Lin TC, Paschen A, Imig J. Long non-coding RNA GRASLND links melanoma differentiation and interferon-gamma response. Front Mol Biosci 2024; 11:1471100. [PMID: 39398277 PMCID: PMC11466874 DOI: 10.3389/fmolb.2024.1471100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma is a highly malignant tumor, that stands as the most lethal form of skin cancer and is characterized by notable phenotypic plasticity and intratumoral heterogeneity. Melanoma plasticity is involved in tumor growth, metastasis and therapy resistance. Long non-coding RNAs (lncRNAs) could influence plasticity due to their regulatory function. However, their role and mode of action are poorly studied. Here, we show a relevance of lncRNA GRASLND in melanoma differentiation and IFNγ signaling. GRASLND knockdown revealed switching of differentiated, melanocytic melanoma cells towards a dedifferentiated, slow-proliferating and highly-invasive cell state. Interestingly, GRASLND is overexpressed in differentiated melanomas and associated with poor prognosis. Accordingly, we found GRASLND expressed in immunological "cold" tumors and it negatively correlates with gene signatures of immune response activation. In line, silencing of GRASLND under IFNγ enhanced the expression of IFNγ-stimulated genes, including HLA-I antigen presentation, demonstrating suppressive activity of GRASLND on IFNγ signaling. Our findings demonstrate that in differentiated melanomas elevated expression of GRASLND interferes with anti-tumor effects of IFNγ, suggesting a role of GRASLND in tumor immune evasion.
Collapse
Affiliation(s)
- Kim Denise Fischer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Shashank Tiwari
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lin Christina Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Tzu-Chen Lin
- Faculty of Chemistry and Chemical Biology, Technical University of Dortmund, Dortmund, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jochen Imig
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
3
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Zhu Y, Li T, Zhou S, Wang G, Zhang H, Yin Y, Wang T, Chen X. Survivin inhibition attenuates EGF-induced epithelial mesenchymal transformation of human RPE cells via the EGFR/MAPK pathway. PLoS One 2024; 19:e0309539. [PMID: 39213375 PMCID: PMC11364297 DOI: 10.1371/journal.pone.0309539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE The abnormal growth factors-induced epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells was known as a vital pathogenesis of proliferative vitreoretinopathy (PVR). This study aims to explore how survivin inhibition affects EMT induced by epidermal growth factor (EGF) in RPE cells. METHODS Human primary RPE cells were identified in vitro. EMT in RPE cells was induced by EGF. Inhibition of survivin in RPE cells was accomplished through the use of a survivin inhibitor (YM155) and survivin siRNA. The viability, proliferation and migration of RPE cells was detected by methylthiazol tetrazolium assay, bromodeoxyuridine labeling assay, and wound healing assay, respectively. The EGF receptor /mitogen-activated protein kinase (EGFR/MAPK) proteins and EMT-related proteins were measured by western blot and immunofluorescence assay. RESULTS EGF induced significant EMT in RPE cells, activated the phosphorylation of EGFR/MAPK signaling proteins, and caused changes to EMT-related proteins. YM155 suppressed RPE cells' viability, proliferation, and migration; induced the phosphorylation of EGFR, JNK, and P38MAPK; and down regulated EGFR and phosphorylated ERK. YM155 also increased expression of E-cadherin and ZO-1 proteins and reduced expression of N-cadherin, Vimentin, and α-SMA proteins. The EGF-induced increase of RPE cell proliferation and migration was constrained by survivin inhibition. Moreover, survivin inhibition in RPE cells suppressed the EGF-caused phosphorylation of EGFR/MAPK proteins and attenuated the EGF-induced reduction of E-cadherin and ZO-1 proteins and increase of N-cadherin, Vimentin, and α-SMA proteins. CONCLUSIONS Survivin inhibition attenuates EGF-induced EMT of RPE cells by affecting the EGFR/MAPK signaling pathway. Survivin might be a promising target for preventing PVR.
Collapse
Affiliation(s)
- Yusheng Zhu
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Teng Li
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Sirui Zhou
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Guowei Wang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Huihui Zhang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Yong Yin
- Xi’ an Eye Bank, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| | - Xiaodong Chen
- Faculty of Life Sciences and medicine, Northwest University, Xi’an, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi’an, Shaanxi Province, China
- Department of Ophthalmology, Xi’an No.1 Hospital, Xi’an, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi’an, Shaanxi Province, China
| |
Collapse
|
5
|
Wan Q, Deng Y, Wei R, Ma K, Tang J, Deng YP. Tumor-infiltrating macrophage associated lncRNA signature in cutaneous melanoma: implications for diagnosis, prognosis, and immunotherapy. Aging (Albany NY) 2024; 16:4518-4540. [PMID: 38475660 PMCID: PMC10968696 DOI: 10.18632/aging.205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
Along with the increasing knowledge of long noncoding RNA, the interaction between the long noncoding RNA (lncRNA) and tumor immune infiltration is increasingly valued. However, there is a lack of understanding of correlation between regulation of specific lncRNAs and tumor-infiltrating macrophages within melanoma. In this research, a macrophage associated lncRNA signature was identified by multiple machine learning algorithms and the robust and effectiveness of signature also validated in other independent datasets. The signature contained six specific lncRNAs (PART1, LINC00968, LINC00954, LINC00944, LINC00518 and C20orf197) was constructed, which could diagnose melanoma and predict the prognosis of patients. Moreover, our signature achieves higher accuracy than the previous well-established markers and regarded as an independent prognostic indicator. The pathway enrichment revealed that these lncRNAs were closely correlated with many immune processes. In addition, the signature was associated with different immune microenvironment and applied to predict response of immune checkpoint inhibitor therapy (low risk of patients well respond to anti-PD-1 therapy and high risk is insensitive to anti-CTLA-4 therapy). Therefore, our finding supplies a more accuracy and effective lncRNA signature for tumor-infiltrating macrophages targeting treatment approaches and affords a new clinical application for predicting the response of immunotherapies in melanomas.
Collapse
Affiliation(s)
- Qi Wan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuhua Deng
- Department of Infection Control, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ran Wei
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying-Ping Deng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Soliman AH, Youness RA, Sebak AA, Handoussa H. Phytochemical-derived tumor-associated macrophage remodeling strategy using Phoenix dactylifera L. boosted photodynamic therapy in melanoma via H19/iNOS/PD-L1 axis. Photodiagnosis Photodyn Ther 2023; 44:103792. [PMID: 37689125 DOI: 10.1016/j.pdpdt.2023.103792] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) represents a barrier to PDT efficacy among melanoma patients. The aim of this study is to employ a novel muti-tactic TME-remodeling strategy via repolarization of tumor-associated macrophages (TAMs), the main TME immune cells in melanoma, from the pro-tumor M2 into the antitumor M1 phenotype using Phoenix dactylifera L. (date palm) in combination with PDT. METHODS Screening of different date cultivars was employed to choose extracts of selective toxicity to melanoma and TAMs, not normal macrophages. Potential extracts were then fractionated and characterized by gas chromatography-mass spectrometry (GC-MS). Finally, the efficacy and the potential molecular mechanism of the co-treatment were portrayed via quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Initial screening resulted in the selection of the two Phoenix dactylifera L. cultivars Safawi and Sukkari methanolic extracts. Sukkari showed superior capacity to revert TAM phenotype into M1 as well as more prominent upregulation of M1 markers and repression of melanoma immunosuppressive markers relative to positive control (resiquimod). Molecularly, it was shown that PDT of melanoma cells in the presence of the secretome of repolarized TAMs surpassed the monotherapy via the modulation of the H19/iNOS/PD-L1immune-regulatory axis. CONCLUSION This study highlights the potential utilization of nutraceuticals in combination with PDT in the treatment of melanoma to provide a dual activity through alleviating the immune suppressive TME and potentiating the anti-tumor responses.
Collapse
Affiliation(s)
- Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt.
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt; Department of Biology and Biochemistry, Faculty of Biotechnology, German International University, New Administrative Capital, New Cairo 11835, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11511, Egypt.
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, Main Entrance El Tagamoa El Khames, New Cairo 11511, Egypt
| |
Collapse
|
8
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Wang D, Li S, Chen Y, Luo J, Li L, Wang B, Xu Y, Liang Y. Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway. J Dermatol Sci 2023; 109:89-98. [PMID: 36870927 DOI: 10.1016/j.jdermsci.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Melanoma is the most common form of skin cancer. Given its high metastasis and high recurrence, its therapies are constantly updated. OBJECTIVE The study aims to prove the efficacy of sodium thiosulfate (STS), an antidote to cyanide or nitroprusside poisoning, in melanoma treatment. METHODS We tested the effect of STS by culturing melanoma cells (B16 and A375) in vitro and establishing melanoma mouse models in vivo. The proliferation and viability of melanoma cells were measured by the CCK-8 test, cell cycle assay, apoptosis analysis, wound healing assay, and transwell migration assay. The expression of apoptosis-related molecules, epithelial-mesenchymal transition (EMT)-associated molecules, and the Wnt/β-catenin signaling pathway-related molecules were determined by Western blotting and immunofluorescence. RESULTS The high metastasis of melanoma is considered to be linked to the EMT process. The scratch assay using B16 and A375 cells also showed that STS could inhibit the EMT process of melanoma. We demonstrated that STS inhibited the proliferation, viability, and EMT process of melanoma by releasing H2S. STS-mediated weakening of cell migration was related to the inhibition of the Wnt/β-catenin signaling pathway. Mechanistically, we defined that STS inhibited the EMT process via the Wnt/β-catenin signaling pathway. CONCLUSIONS These results suggest that the negative effect of STS on melanoma development is mediated by the reduction of EMT via the regulation of the Wnt/β-catenin signaling pathway, which provides a new clue to treating melanoma.
Collapse
Affiliation(s)
- Di Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yishan Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bocheng Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yingping Xu
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Chen W, Qian W, Nie J, Dai M. A study of the prognostic value of long non-coding RNA CASC15 in human solid tumors utilizing The Cancer Genome Atlas (TCGA) datasets and a meta-analysis. Clin Exp Med 2023; 23:65-78. [PMID: 35103883 DOI: 10.1007/s10238-021-00789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS Several malignant solid tumors have been reported to have an abnormal expression of the long non-coding RNA CASC15 (lncRNA CASC15). However, the clinicopathologic and prognostic importance of CASC15 in solid tumors are unknown. As a result, we examined the interrelationship between CASC15, overall survival length, and clinicopathological attributes of cancers affecting humans by analyzing various studies and The Cancer Genome Atlas (TCGA) data related to CASC15 expression. METHODS Web of Science, PubMed, Cochrane Library, Embase, Chinese WanFang, and Chinese CNKI databases were used to conduct a literature search. Hazard ratios (HRs) and Pooled odds ratios (ORs) were calculated taking 95% confidence intervals (CIs). The results of the current meta-analysis were further validated using TCGA datasets. RESULTS A total of 12 eligible studies enrolling 767 patients were included in this meta-analysis. Findings of the analysis showed that CASC15 expression had a significant relation to the metastasis of lymph node (OR = 3.30, 95%CI = 1.88-5.81, p < 0.001), distant metastasis (OR = 2.64, 95%CI = 1.24-5.63, p = 0.012), and high TNM/clinical stage (OR = 2.67, 95%CI = 1.34-5.32, p = 0.005). Additionally, we found that a poor outcome for overall survival (OS) was predicted by an elevation in CASC15 expression (HR = 2.01, 95%CI = 1.71-2.36, p < 0.001). Further investigation of the TCGA dataset revealed that CASC15 had abnormal expression in many cancers, which at least partially validated the findings of the current meta-analysis. CONCLUSIONS According to the latest meta-analysis and systematic review, high expression levels of CASC15 are associated with poor survival outcomes for solid tumor patients, and the use of CASC15 as a solid tumor prognostic predictor has a solid theoretical foundation.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Gastroenterology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, People's Republic of China.
| | - Wenqi Qian
- Department of Pharmacy, People's Hospital of Qiandongnan and Dong Autonomous Prefecture, Kaili, People's Republic of China
| | - Jun Nie
- Department of Gastroenterology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, People's Republic of China
| | - Mintao Dai
- Department of Gastroenterology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, People's Republic of China
| |
Collapse
|
11
|
Dashti F, Mirazimi SMA, Kazemioula G, Mohammadi M, Hosseini M, Razaghi Bahabadi Z, Mirazimi MS, Abadi MHJN, Shahini A, Afshari M, Mirzaei H. Long non-coding RNAs and melanoma: From diagnosis to therapy. Pathol Res Pract 2023; 241:154232. [PMID: 36528985 DOI: 10.1016/j.prp.2022.154232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Although extremely rare, malignant melanoma is the deadliest type of skin malignancy with the inherent capability to invade other organs and metastasize to distant tissues. In 2021, it was estimated that approximately 106,110 patients may have received the diagnosis of melanoma, with a mortality rate of 7180. Surgery remains the common choice for treatment in patients with melanoma. Despite many advances in the treatment of melanoma, some patients, such as those who have received cytotoxic chemotherapeutic and immunotherapic agents, a significant number of patients may show inadequate treatment response following initiating these treatments. Non-coding RNAs, including lncRNAs, have become recently popular and attracted the attention of many researchers to make new insights into the pathogenesis of many diseases, particularly malignancies. LncRNAs have been thoroughly investigated in multiple cancers such as melanoma and have been shown to play a major role in regulating various physiological and pathological cellular processes. Considering their core regulatory function, these non-coding RNAs may be appropriate candidates for melanoma patients' diagnosis, prognosis, and treatment. In this review, we will cover all the current literature available for lncRNAs in melanoma and will discuss their potential benefits as diagnostic and/or prognostic markers or potent therapeutic targets in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Golnesa Kazemioula
- Department of Medical Genetics, School of Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Mirazimi
- Department of Obstetrics & Gynocology,Isfahan School of Medicine,Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Afshari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Liu R, Sun X, Hu Z, Peng C, Wu T. Knockdown of long non-coding RNA MIR155HG suppresses melanoma cell proliferation, and deregulated MIR155HG in melanoma is associated with M1/M2 balance and macrophage infiltration. Cells Dev 2022; 170:203768. [DOI: 10.1016/j.cdev.2022.203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
|
13
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
14
|
Shen L, Pan L, Ju C, Wu X. The role of Wnt/β-catenin pathway for skin-derived precursors differentiating into corneal endothelial cell-like cells. Exp Eye Res 2022; 218:109008. [DOI: 10.1016/j.exer.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 11/04/2022]
|
15
|
Tuerlings M, van Hoolwerff M, van Bokkum JM, Suchiman HED, Lakenberg N, Broekhuis D, Nelissen RGHH, Ramos YFM, Mei H, Cats D, Coutinho de Almeida R, Meulenbelt I. Long non-coding RNA expression profiling of subchondral bone reveals AC005165.1 modifying FRZB expression during osteoarthritis. Rheumatology (Oxford) 2021; 61:3023-3032. [PMID: 34730803 PMCID: PMC9258540 DOI: 10.1093/rheumatology/keab826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Objective To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. Methods RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. Results In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19–7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10−8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10−6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10−3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). Conclusion The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.
Collapse
Affiliation(s)
- Margo Tuerlings
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - Marcella van Hoolwerff
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - Jessica M van Bokkum
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - H Eka D Suchiman
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - Nico Lakenberg
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - Demiën Broekhuis
- Dept. Orthopaedics Leiden, University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Dept. Orthopaedics Leiden, University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - Hailiang Mei
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | - Davy Cats
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| | | | - Ingrid Meulenbelt
- Dept. of Biomedical Data Sciences, Leiden, The Netherlands, Leiden University Medical Center
| |
Collapse
|
16
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
17
|
Meyer T, Sand M, Schmitz L, Stockfleth E. The Role of Circular RNAs in Keratinocyte Carcinomas. Cancers (Basel) 2021; 13:cancers13164240. [PMID: 34439394 PMCID: PMC8392367 DOI: 10.3390/cancers13164240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Keratinocyte carcinomas (KC) include basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) and represents the most common cancer in Europe and North America. Both entities are characterized by a very high mutational burden, mainly UV signature mutations. Predominately mutated genes in BCC belong to the sonic hedgehog pathway, whereas, in cSCC, TP53, CDKN2A, NOTCH1/2 and others are most frequently mutated. In addition, the dysregulation of factors associated with epithelial to mesenchymal transition (EMT) was shown in invasive cSCC. The expression of factors associated with tumorigenesis can be controlled in several ways and include non-coding RNA molecules, such as micro RNAs (miRNA) long noncoding RNAs (lncRNA) and circular RNAs (circRNA). To update findings on circRNA in KC, we reviewed 13 papers published since 2016, identified in a PubMed search. In both BCC and cSCC, numerous circRNAs were identified that were differently expressed compared to healthy skin. Some of them were shown to target miRNAs that are also dysregulated in KC. Moreover, some studies confirmed the biological functions of individual circRNAs involved in cancer development. Thus, circRNAs may be used as biomarkers of disease and disease progression and represent potential targets of new therapeutic approaches for KC.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
- Correspondence: ; Tel.: +49-234-5096014
| | - Michael Sand
- Department of Plastic and Reconstructive Surgery, St. Josef-Hospital, Heidbergweg 22–24, 45257 Essen, Germany;
| | - Lutz Schmitz
- Institute of Dermatopathology, MVZ Corius DermPath Bonn, GmbH, Trierer Strasse 70–72, 53115 Bonn, Germany;
| | - Eggert Stockfleth
- Department of Dermatology St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| |
Collapse
|
18
|
LncRNA CASC15 promotes the proliferation of papillary thyroid carcinoma cells by regulating the miR-7151-5p/WNT7A axis. Pathol Res Pract 2021; 225:153561. [PMID: 34325316 DOI: 10.1016/j.prp.2021.153561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in the regulation of human thyroid cancer (TC), including papillary thyroid carcinoma (PTC); PTC is the most common pathological subtype of TC. To date, the expression, function, and mechanism of the lncRNA CASC15 in PTC remain unclear. The present study results showed that CASC15 was overexpressed in PTC tissues compared with normal tissues and acted as a potent oncogene to promote the proliferation and tumorigenesis of PTC cells both in vitro and in vivo. Mechanistic studies demonstrated that CASC15 could serve as an endogenous miRNA sponge to absorb and downregulate miR-7151-5p, thereby preventing the inhibition of WNT7A during PTC progression. Furthermore, the study demonstrated that CASC15 activated the WNT/β‑catenin signaling pathway by upregulating WNT7A in PTC. Taken together, our findings identified CASC15 as a potential diagnostic marker or therapeutic target for PTC progression. DATA AVAILABILITY: Please contact the corresponding author for a data request.
Collapse
|
19
|
Li J, Zhang H, Bei S, Zhang X, Li H, Ye L, Feng L. Disruption of Wnt/β-catenin Pathway Elevates the Sensitivity of Gastric Cancer Cells to PD-1 Antibody. Curr Mol Pharmacol 2021; 15:557-569. [PMID: 34139974 DOI: 10.2174/1874467214666210617163821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common malignancy tumor and the third cause of cancer-related death around the world. Immune checkpoint inhibitors (ICIs) such as programmed cell death-1 (PD-1) antibodies play an active role in tumor therapy. A recent study reveals that the Wnt/β-catenin signaling pathway is negatively correlated with T-cell infiltration in the tumor microenvironment (TME), thereby influencing the therapeutic efficacy of the PD-1 antibody. OBJECTIVE In this study, we aimed to uncover the relationship of the Wnt/β-catenin pathway to CD8+ T cell activity as well as its effect on anti-PD-1 therapeutic efficacy in GC. METHODS We first collected clinical samples and went through an immunohistochemical analysis and found that a high β-catenin expression in GC tissues was often associated with a significant absence of CD8+ T-cell infiltration. RESULTS In addition, our data further indicated that disruption of the Wnt/β-catenin pathway in GC cells inhibited their migratory and invasive ability. Meanwhile, enhanced sensitivity of GC cells to PD-1 blockade therapy was evident by decreased Jurkat cell apoptosis rate and increased GC cell apoptosis rate in a tumor and Jurkat cells co-culture system with the presence of Wnt/β-catenin pathway inhibition. CONCLUSION Collectively, these findings indicated that the Wnt/β-catenin pathway might play a significant role in modulating the activity of Jurkat cells, and downregulation of Wnt/β-catenin may enhance the sensitivity of GC cells to PD-1 antibody in vitro. This result further indicated that β-catenin and PD-1 targeted inhibition might become a potential and effective therapy for GC patients.
Collapse
Affiliation(s)
- Jian Li
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hui Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Songhua Bei
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiaohong Zhang
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huanqing Li
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Li Ye
- Department of Biological Medicines & Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Feng
- Endoscopy center, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
20
|
Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A. An Overview of Long Non-Coding (lnc)RNAs in Neuroblastoma. Int J Mol Sci 2021; 22:ijms22084234. [PMID: 33921816 PMCID: PMC8072620 DOI: 10.3390/ijms22084234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous developmental tumor occurring in childhood, which arises from the embryonic sympathoadrenal cells of the neural crest. Although the recent progress that has been done on this tumor, the mechanisms involved in NB are still partially unknown. Despite some genetic aberrations having been identified, the sporadic cases represent the majority. Due to its wide heterogeneity in clinical behavior and etiology, NB represents a challenge in terms of prevention and treatment. Since a definitive therapy is lacking so far, there is an urgent necessity to unveil the molecular mechanisms behind NB onset and progression to develop new therapeutic approaches. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides. Whether lncRNAs are destined to become a protein or not, they exert multiple biological functions such as regulating gene expression and functions. In recent decades, different research has highlighted the possible role of lncRNAs in the pathogenesis of many diseases, including cancer. Moreover, lncRNAs may represent potential markers or targets for diagnosis and treatment of diseases. This mini-review aimed to briefly summarize the most recent findings on the involvement of some lncRNAs in NB disease by focusing on their mechanisms of action and possible role in unveiling NB onset and progression.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Matilde Calderoni
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences DISTAV, University of Genova, 16132 Genova, Italy;
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy;
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
21
|
Sun J, Xiong Y, Jiang K, Xin B, Jiang T, Wei R, Zou Y, Tan H, Jiang T, Yang A, Jia L, Wang L. Hypoxia-sensitive long noncoding RNA CASC15 promotes lung tumorigenesis by regulating the SOX4/β-catenin axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:12. [PMID: 33407675 PMCID: PMC7789733 DOI: 10.1186/s13046-020-01806-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Background Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are involved in the hypoxia-related cancer process and play pivotal roles in enabling malignant cells to survive under hypoxic stress. However, the molecular crosstalk between lncRNAs and hypoxia signaling cascades in non-small cell lung cancer (NSCLC) remains largely elusive. Methods Firstly, we identified differentially expressed lncRNA cancer susceptibility candidate 15 (CASC15) as associated with NSCLC based on bioinformatic data. The clinical significance of CASC15 in lung cancer was investigated by Kaplan-Meier survival analysis. Then, we modulated CASC15 expression in NSCLC cell lines by RNAi. CCK-8 and transwell assays were carried out to examine the effects of CASC15 on proliferation and migration of NSCLC cells. Upstream activator and downstream targets of CASC15 were validated by luciferase reporter assay, qRT-PCR, Western blotting, and chromatin immunoprecipitation (ChIP). Lastly, RNA in situ hybridization (RNA-ISH) and immunohistochemistry (IHC) were performed to confirm the genetic relationships between CASC15 and related genes in clinical samples. Results CASC15 was highly expressed in NSCLC tissues and closely associated with poor prognosis. Loss-of-function analysis demonstrated that CASC15 was essential for NSCLC cell migration and growth. Mechanistic study revealed that CASC15 was transcriptionally activated by hypoxia signaling in NSCLC cells. Further analysis showed that hypoxia-induced CASC15 transactivation was mainly dependent on hypoxia-inducible factor 1α (HIF-1α) and hypoxia response elements (HREs) located in CASC15 promoter. CASC15 promotes the expression of its chromosomally nearby gene, SOX4. Then SOX4 functions to stabilize β-catenin protein, thereby enhancing the proliferation and migration of NSCLC cells. HIF-1α/CASC15/SOX4/β-catenin pathway was activated in a substantial subset of NSCLC patients. Conclusions HIF-1α/CASC15/SOX4/β-catenin axis plays an essential role in the development and progression of NSCLC. The present work provides new evidence that lncRNA CASC15 holds great promise to be used as novel biomarkers for NSCLC. Blocking the HIF-1α/CASC15/SOX4/β-catenin axis can serve as a potential therapeutic strategy for treating NSCLC.
Collapse
Affiliation(s)
- Jianyong Sun
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Kuo Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Bo Xin
- Department of Oncology, The 960th Hospital of PLA, Tai'an, 271000, Shandong, China
| | - Tongtong Jiang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Renji Wei
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuankang Zou
- The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hong Tan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
22
|
Qin B, Dong M, Wang Z, Wan J, Xie Y, Jiao Y, Yan D. Long non‑coding RNA CASC15 facilitates esophageal squamous cell carcinoma tumorigenesis via decreasing SIM2 stability via FTO‑mediated demethylation. Oncol Rep 2020; 45:1059-1071. [PMID: 33650646 PMCID: PMC7860005 DOI: 10.3892/or.2020.7917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the regulation of esophageal squamous cell carcinoma (ESCC) progression. However, the function and mechanism of lncRNA cancer susceptibility candidate 15 (CASC15) are poorly defined. In the present study, tumor and normal adjacent tissues were collected from 45 patients with ESCC. Expression levels of CASC15, fat mass and obesity-associated (FTO) protein and single-minded 2 (SIM2) were examined via reverse transcription-quantitative PCR and western blot assays. Cell proliferation and apoptosis were evaluated via MTT, flow cytometry and caspase-3 activity assays, respectively. Additionally, an ESCC mouse xenograft model was used to assess the function of CASC15 in vivo. The interaction between FTO and CASC15/SIM2 was analyzed via RNA immunoprecipitation and RNA pull-down assays. The results revealed that CASC15 expression was elevated in ESCC tissues, and patients with ESCC exhibiting high CASC15 expression had a poor prognosis. CASC15-knockdown inhibited ESCC cell proliferation and facilitated apoptosis. Additionally, CASC15-knockdown decreased the growth of ESCC xenograft tumors. CASC15 decreased SIM2 stability via FTO-mediated demethylation. Additionally, FTO loss markedly weakened CASC15-mediated pro-proliferative and anti-apoptotic effects in ESCC cells. SIM2 downregulation weakened the effect of CASC15-knockdown on cell proliferation and inhibited the increase of the apoptotic rate and caspase-3 activity induced by CASC15 depletion in ESCC cells. In conclusion, CASC15 promoted ESCC tumorigenesis by decreasing SIM2 stability via FTO-mediated demethylation.
Collapse
Affiliation(s)
- Bo Qin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingying Xie
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Jiao
- Yongcheng Coal & Electricity Holding Group Co., Ltd., Shangqiu, Henan 476000, P.R. China
| | - Dan Yan
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Zhou L, Xing C, Zhou D, Yang R, Cai M. Downregulation of lncRNA FGF12-AS2 suppresses the tumorigenesis of NSCLC via sponging miR-188-3p. Open Med (Wars) 2020; 15:986-996. [PMID: 33344773 PMCID: PMC7724005 DOI: 10.1515/med-2020-0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Non-small-cell lung carcinoma (NSCLC) seriously threatens the health of human beings. Aberrant expression of lncRNAs has been confirmed to be related with the progression of multiple malignant tumors, including NSCLC. LncRNA FGF12-AS2 has been considered to be upregulated in NSCLC. However, the mechanism by which FGF12-AS2 promotes the tumorigenesis of NSCLC remains elusive. Methods Gene and protein expressions in NSCLC cells were measured by q-PCR and western blot, respectively. CCK-8 and immunofluorescence staining were performed to detect the cell proliferation. Cell apoptosis was tested by flow cytometry. Transwell assay was used to detect the cell migration and invasion. Finally, the dual luciferase report assay was used to verify the relation among FGF12-AS2, miR-188-3p, and NCAPG2. Results Downregulation of FGF12-AS2 significantly inhibited the proliferation of NSCLC cells via inducing apoptosis. In addition, FGF12-AS2 silencing notably suppressed the migration and invasion of A549 cells. Meanwhile, FGF12-AS2 modulated the progression of NSCLC via regulation of miR-188-3p/NCAPG2 axis. Finally, knockdown of FGF12-AS2 inhibited the tumorigenesis of NSCLC via suppressing the EMT process of NSCLC. Conclusion Downregulation of lncRNA FGF12-AS2 suppressed the tumorigenesis of NSCLC via sponging miR-188-3p. Thus, FGF12-AS2 may serve as a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Chen Xing
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Dongxia Zhou
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Rong Yang
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| | - Maohuai Cai
- Department of Oncology, Yancheng Second People’s Hospital, No. 135 Kaifang Avenue, Yancheng 224003, Jiangsu, China
| |
Collapse
|
24
|
Safa A, Gholipour M, Dinger ME, Taheri M, Ghafouri-Fard S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp Mol Pathol 2020; 117:104558. [PMID: 33096077 DOI: 10.1016/j.yexmp.2020.104558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) embrace a huge fraction of human transcripts and participate in the pathogenesis of human disorders especially malignant conditions. Malignant melanoma, as the most fatal type of cutaneous malignnacies, is associated with dysregulation of several lncRNAs including PVT1, H19, MALAT1, and CCAT1. Moreover, a portion of lncRNAs are exclusively expressed in melanoma cell lines. Expression levels of several lncRNAs are associated with TNM stage, tumor size and progression of melanoma. Thus, these lncRNAs are regarded as biomarkers for this malignancy. Peripheral transcript levels of a number of lncRNAs, such as PVT1, SNHG5 and SPRY4-IT1, could distinguish melanoma patients from unaffected persons with appropriate sensitivity and specificity values. Moreover, expression levels of numerous lncRNAs in tissue biopsies could differentiate malignant samples from benign samples. Based on the results of both cell line and in vivo studies, lncRNAs regulate critical pathways in the carcinogenesis of melanoma, such as the PI3K/Akt and NF-κB signaling pathways, and are involved in the modulation of response to chemotherapeutic agents. Here we review the existing information on the role of lncRNAs in malignant melanoma.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|