1
|
Demidova MM, Holmqvist F, Erlinge D, Platonov PG. Ventricular arrhythmias during ST-segment elevation myocardial infarction and arrhythmic complications during recurrent ischaemic events. Eur Heart J 2024; 45:393-395. [PMID: 37935589 PMCID: PMC10834155 DOI: 10.1093/eurheartj/ehad740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
- Marina M Demidova
- Department of Cardiology, Clinical Sciences, Lund, Lund University, Lund 22185, Sweden
| | - Fredrik Holmqvist
- Department of Cardiology, Clinical Sciences, Lund, Lund University, Lund 22185, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund, Lund University, Lund 22185, Sweden
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund, Lund University, Lund 22185, Sweden
| |
Collapse
|
2
|
Chevalier P, Moreau A, Bessière F, Richard S, Chahine M, Millat G, Morel E, Paganelli F, Lesavre N, Placide L, Montestruc F, Ankou B, Puertas RD, Asatryan B, Delinière A. Identification of Cx43 variants predisposing to ventricular fibrillation in the acute phase of ST-elevation myocardial infarction. Europace 2023; 25:101-111. [PMID: 35942675 PMCID: PMC10103570 DOI: 10.1093/europace/euac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Ventricular fibrillation (VF) occurring in the acute phase of ST-elevation myocardial infarction (STEMI) is the leading cause of sudden cardiac death worldwide. Several studies showed that reduced connexin 43 (Cx43) expression and reduced conduction velocity increase the risk of VF in acute myocardial infarction (MI). Furthermore, genetic background might predispose individuals to primary VF (PVF). The primary objective was to evaluate the presence of GJA1 variants in STEMI patients. The secondary objective was to evaluate the arrhythmogenic impact of GJA1 variants in STEMI patients with VF. METHODS AND RESULTS The MAP-IDM prospective cohort study included 966 STEMI patients and was designed to identify genetic predisposition to VF. A total of 483 (50.0%) STEMI patients with PVF were included. The presence of GJA1 variants increased the risk of VF in STEMI patients [from 49.1 to 70.8%, P = 0.0423; odds ratio (OR): 0.40; 95% confidence interval: 0.16-0.97; P = 0.04]. The risk of PVF decreased with beta-blocker intake (from 53.5 to 44.8%, P = 0.0085), atrial fibrillation (from 50.7 to 26.4%, P = 0.0022), and with left ventricular ejection fraction >50% (from 60.2 to 41.4%, P < 0.0001). Among 16 GJA1 variants, three novel heterozygous missense variants were identified in three patients: V236I, H248R, and I327M. In vitro studies of these variants showed altered Cx43 localization and decreased cellular communication, mainly during acidosis. CONCLUSION Connexin 43 variants are associated with increased VF susceptibility in STEMI patients. Restoring Cx43 function may be a potential therapeutic target to prevent PVF in patients with acute MI. CLINICAL TRIAL REGISTRATION Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00859300.
Collapse
Affiliation(s)
- Philippe Chevalier
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Adrien Moreau
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHU Arnaud de Villeneuve, 34295 Montpellier, France
| | - Francis Bessière
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Sylvain Richard
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHU Arnaud de Villeneuve, 34295 Montpellier, France
| | | | - Gilles Millat
- Laboratoire de Cardiogénétique moléculaire, Centre de biologie et pathologie Est, Bron, France
| | - Elodie Morel
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | | | | | - Leslie Placide
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | | | - Bénédicte Ankou
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Rosa Doñate Puertas
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, Inserm, Université Paris-Saclay, Paris, France
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Antoine Delinière
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | | |
Collapse
|
3
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
4
|
Mikhailova VB, Karpushev AV, Vavilova VD, Klimenko ES, Tulintseva T, Yudina YS, Vasichkina ES, Zhorov BS, Kostareva A. Functional Analysis of SCN5A Genetic Variants Associated with Brugada Syndrome. Cardiology 2021; 147:35-46. [PMID: 34628415 DOI: 10.1159/000519857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is a rare inherited cardiac arrhythmia with increased risk of sudden cardiac death. Mutations in gene SCN5A, which encodes the α-subunit of cardiac voltage-gated sodium channel NaV1.5, have been identified in over 20% of patients with BrS. However, only a small fraction of NaV1.5 variants, which are associated with BrS, are characterized in electrophysiological experiments. RESULTS Here we explored variants V281A and L1582P, which were found in our patients with BrS, and variants F543L and K1419E, which are reportedly associated with BrS. Heterologous expression of the variants in CHO-K1 cells and the Western blot analysis demonstrated that each variant appeared at the cell surface. We further measured sodium current in the whole-cell voltage clamp configuration. Variant F543L produced robust sodium current with a hyperpolarizing shift in the voltage dependence of steady-state fast inactivation. Other variants did not produce detectable sodium currents, indicating a complete loss of function. In a recent cryoEM structure of the hNaV1.5 channel, residues V281, K1419, and L1582 are in close contacts with residues whose mutations are reportedly associated with BrS, indicating functional importance of respective contacts. CONCLUSIONS Our results support the notion that loss of function of NaV1.5 or decrease of the channel activity is involved in the pathogenesis of BrS.
Collapse
Affiliation(s)
| | - Alexey V Karpushev
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation
| | - Viola D Vavilova
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation
| | | | - Tatyana Tulintseva
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation
| | - Yulia S Yudina
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation
| | - Elena S Vasichkina
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation
| | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation.,Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, St. Petersburg, Russian Federation.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Anna Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russian Federation.,Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Kosmas N, Manolis AS, Dagres N, Iliodromitis EK. Myocardial infarction or acute coronary syndrome with non-obstructive coronary arteries and sudden cardiac death: a missing connection. Europace 2021; 22:1303-1310. [PMID: 32894280 PMCID: PMC7478321 DOI: 10.1093/europace/euaa156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction with non-obstructive coronary arteries or any acute coronary syndrome (ACS) with normal or near-normal (non-obstructive) coronary arteries (ACS-NNOCA) is an heterogeneous clinical entity, which includes different pathophysiology mechanisms and is challenging to treat. Sudden cardiac death (SCD) is a catastrophic manifestation of ACS that is crucial to prevent and treat urgently. The concurrence of the two conditions has not been adequately studied. This narrative review focuses on the existing literature concerning ACS-NNOCA pathophysiology, with an emphasis on SCD, together with risk and outcome data from clinical trials. There have been no large-scale studies to investigate the incidence of SCD within ACS-NNOCA patients, both early and late in the disease. Some pathophysiology mechanisms that are known to mediate ACS-NNOCA, such as atheromatous plaque erosion, anomalous coronary arteries, and spontaneous coronary artery dissection are documented causes of SCD. Myocardial ischaemia, inflammation, and fibrosis are probably at the core of the SCD risk in these patients. Effective treatments to reduce the relevant risk are still under research. ACS-NNOCA is generally considered as an ACS with more 'benign' outcome compared to ACS with obstructive coronary artery disease, but its relationship with SCD remains obscure, especially until its incidence and effective treatment are evaluated.
Collapse
Affiliation(s)
- Nikolaos Kosmas
- Second University Department of Cardiology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece
| | - Antonis S Manolis
- First and Third University Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Efstathios K Iliodromitis
- Second University Department of Cardiology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece
| |
Collapse
|
6
|
Dias-Santos FF, Marziliano N. When Coronary Artery Disease Meets a Channelopathy: An Unexpected Dangerous Date. Cardiology 2019; 145:46-47. [PMID: 31775145 DOI: 10.1159/000503855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Affiliation(s)
| | - Nicola Marziliano
- Università degli Studi del Molise, Campobasso, Italy, .,Clinical Pathology Laboratory, ASL Taranto, Taranto, Italy, .,Fondazione Floresta Longo, Catania, Italy,
| |
Collapse
|