1
|
Bernegossi AM, Galindo DJ, Peres PHF, Vozdova M, Cernohorska H, Kubickova S, Kadlcikova D, Rubes J, Duarte JMB. Comparative karyotype analysis of the red brocket deer (M. americana sensu lato and M. rufa) complex: evidence of drastic chromosomal evolution and implications on speciation process. J Appl Genet 2024; 65:601-614. [PMID: 38662189 DOI: 10.1007/s13353-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, National University of San Marcos, San Borja, 15021, Lima, Peru.
| | - Pedro Henrique Faria Peres
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil
| | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Halina Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Dita Kadlcikova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech Republic
| | - José Maurício Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, 14884-900, Brazil.
| |
Collapse
|
2
|
de Moraes RLR, de Menezes Cavalcante Sassi F, Vidal JAD, Goes CAG, dos Santos RZ, Stornioli JHF, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 2023; 24:13654. [PMID: 37686460 PMCID: PMC10563077 DOI: 10.3390/ijms241713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Francisco de Menezes Cavalcante Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Jhon Alex Dziechciarz Vidal
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Fábio Porto-Foresti
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
3
|
Morales-Donoso JA, Vacari GQ, Bernegossi AM, Sandoval EDP, Peres PHF, Galindo DJ, de Thoisy B, Vozdova M, Kubickova S, Barbanti Duarte JM. Revalidation of Passalites Gloger, 1841 for the Amazon brown brocket deer P.nemorivagus (Cuvier, 1817) (Mammalia, Artiodactyla, Cervidae). Zookeys 2023; 1167:241-264. [PMID: 37388777 PMCID: PMC10300653 DOI: 10.3897/zookeys.1167.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
Mazamanemorivaga (Cuvier, 1817) is a gray brocket deer that inhabits the Amazon region. An assessment of previous studies revealed inconsistencies in its current taxonomic classification, suggesting the need for an update in its genus classification. A taxonomic repositioning of this species is proposed through the collection of a specimen from its type locality (French Guiana) with subsequent morphological (coloring pattern, body measurements, and craniometry), cytogenetics (G Band, C Band, conventional Giemsa, Ag-NOR staining, and BAC probe mapping), and molecular phylogenetic analysis (mitochondrial genes Cyt B of 920 bp, COI I of 658 bp, D-loop 610 bp), and comparisons with other specimens of the same taxon, as well as other Neotropical deer species. The morphological and cytogenetic differences between this and other Neotropical Cervidae confirm the taxon as a unique and valid species. The phylogenetic analysis evidenced the basal position of the M.nemorivaga specimens within the Blastocerina clade. This shows early diversification and wide divergence from the other species, suggesting that the taxon should be transferred to a different genus. A taxonomic update of the genus name is proposed through the validation of Passalites Gloger, 1841, with Passalitesnemorivagus (Cuvier, 1817) as the type species. Future research should focus on evaluating the potential existence of other species within the genus Passalites, as suggested in the literature.
Collapse
Affiliation(s)
- Jorge Alfonso Morales-Donoso
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Gabrielle Queiroz Vacari
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Agda Maria Bernegossi
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Eluzai Dinai Pinto Sandoval
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Pedro Henrique Faria Peres
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - David Javier Galindo
- Laboratorio de Reproducción Animal, Departamento de Producción Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marco, San Borja, Lima, PeruUniversidad Nacional Mayor de San MarcoLimaPeru
| | | | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech RepublicCentral European Institute of Technology-Veterinary Research InstituteBrnoCzech Republic
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech RepublicCentral European Institute of Technology-Veterinary Research InstituteBrnoCzech Republic
| | - José Mauricio Barbanti Duarte
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| |
Collapse
|
4
|
Bernegossi AM, Borges CHDS, Sandoval EDP, Cartes JL, Cernohorska H, Kubickova S, Vozdova M, Caparroz R, González S, Duarte JMB. Resurrection of the genus Subulo Smith, 1827 for the gray brocket deer, with designation of a neotype. J Mammal 2022. [DOI: 10.1093/jmammal/gyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The gray brocket deer, Mazama gouazoubiraG. Fischer, 1814, occurs in South America and presents an extensive degree of morphological and genetic variability. Previous phylogenetic research showed that the genus Mazama is polyphyletic and imposed the designation of a different genus-group name for M. gouazoubira. We aimed to review and clarify the taxonomy of M. gouazoubira through the proposal of updating the nomenclature for this taxon and by the characterization of specimens collected close to the original type locality (topotypes). The topotypes were characterized by morphological (general characterization and morphometry), cytogenetic (conventional staining, Ag-NOR, G- and C-banding, and fluorescence in situ hybridization), and phylogenetic (mitogenomes) approaches. We revealed chromosome homologies between cattle and M. gouazoubira using an entire set of cattle whole chromosome painting probes and propose an updated G-band idiogram for the species. The morphometric analysis did not discriminate the individuals of M. gouazoubira, including the topotypes, from other small brocket deer species. However, the phylogenetic analysis, based on a Bayesian inference tree of the mitogenomes, confirmed the polyphyly of the genus Mazama and supported the need to change the gray brocket deer genus-group name. Based on our revision, we validated the genus SubuloSmith, 1827, and fixed a type species for the genus. In the absence of the holotype, we denominated a neotype described by the collection of a male topotype in Paraguay. The nomenclature rearrangement presented here is a starting point that will assist in the taxonomic resolution of Neotropical deer.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal , São Paulo , Brazil
| | - Carolina Heloisa de Souza Borges
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal , São Paulo , Brazil
- Centro de Aquicultura da Unesp (CAUNESP) , Jaboticabal , São Paulo , Brazil
| | - Eluzai Dinai Pinto Sandoval
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal , São Paulo , Brazil
| | - José Luis Cartes
- Guyra Paraguay, Avda Cnel Bóveda , Parque del Río, Viñas Cue, Asunción , Paraguay
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute , Brno , Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute , Brno , Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute , Brno , Czech Republic
| | - Renato Caparroz
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília , Brasília , Brazil
| | - Susana González
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable , Montevidéo , Uruguay
| | - José Maurício Barbanti Duarte
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal, São Paulo , Brazil
| |
Collapse
|
5
|
Bernegossi AM, Vozdova M, Cernohorska H, Kubickova S, Galindo DJ, Kadlcikova D, Rubes J, Duarte JMB. Cytogenetic Mapping of Cattle BAC Probes for the Hypothetical Ancestral Karyotype of the Family Cervidae. Cytogenet Genome Res 2022; 162:140-147. [PMID: 35981520 DOI: 10.1159/000525592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Cervids are characterized by their greatest karyotypic diversity among mammals. A great diversity of chromosome numbers in notably similar morphological groups leads to the existence of several complexes of cryptic species and taxonomic uncertainties. Some deer lineages, such as those of Neotropical deer, stand out for a rapid chromosomal reorganization and intraspecific chromosome polymorphisms, which have not been properly explored yet. For that reason, we contribute to the study of deer karyotype diversity and taxonomy by producing and characterizing new molecular cytogenetic markers for the gray brocket deer (Subulo gouazoubira), a deer species that retained the hypothetical ancestral karyotype of Cervidae. We used bacterial artificial chromosome (BAC) clones derived from the cattle genome (Bos taurus) as markers, which were hybridized on S. gouazoubira metaphase chromosomes. In total, we mapped 108 markers, encompassing all gray brocket deer chromosomes, except the Y chromosome. The detailed analysis of fluorescent in situ hybridization results showed 6 fissions and 1 fusion as interchromosomal rearrangements that have separated cattle and gray brocket deer karyotypes. Each group of BAC probes derived from bovine chromosome pairs 1, 2, 5, 6, 8, and 9 showed hybridization signals on 2 different chromosomes, while pairs 28 and 26 are fused in tandem in a single acrocentric chromosome in S. gouazoubira. Furthermore, the BAC markers detected the occurrence of intrachromosomal rearrangements in the S. gouazoubira chromosomes homologous to pair 1 and the X chromosome of cattle. We present a karyotypic map of the 108 new markers, which will be of great importance for future karyotypic evolution studies in cervids and, consequently, help in their conservation and taxonomy resolution.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil,
| | - Miluse Vozdova
- Veterinary Research Institute, Central European Institute of Technology, Brno, Czechia
| | - Halina Cernohorska
- Veterinary Research Institute, Central European Institute of Technology, Brno, Czechia
| | - Svatava Kubickova
- Veterinary Research Institute, Central European Institute of Technology, Brno, Czechia
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Dita Kadlcikova
- Veterinary Research Institute, Central European Institute of Technology, Brno, Czechia
| | - Jiri Rubes
- Veterinary Research Institute, Central European Institute of Technology, Brno, Czechia
| | - José Maurício Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
6
|
Field MA, Yadav S, Dudchenko O, Esvaran M, Rosen BD, Skvortsova K, Edwards RJ, Keilwagen J, Cochran BJ, Manandhar B, Bustamante S, Rasmussen JA, Melvin RG, Chernoff B, Omer A, Colaric Z, Chan EKF, Minoche AE, Smith TPL, Gilbert MTP, Bogdanovic O, Zammit RA, Thomas T, Aiden EL, Ballard JWO. The Australian dingo is an early offshoot of modern breed dogs. SCIENCE ADVANCES 2022; 8:eabm5944. [PMID: 35452284 PMCID: PMC9032958 DOI: 10.1126/sciadv.abm5944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/09/2022] [Indexed: 06/11/2023]
Abstract
Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.
Collapse
Affiliation(s)
- Matt A. Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Sonu Yadav
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Meera Esvaran
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Blake J. Cochran
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bikash Manandhar
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacob Agerbo Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- Center for Evolutionary Hologenomics, Faculty of Health and Medical Sciences, The GLOBE Institute University of Copenhagen, Copenhagen, Denmark
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Arina Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zane Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eva K. F. Chan
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle, NSW 2300, Australia
| | - Andre E. Minoche
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Timothy P. L. Smith
- U.S. Meat Animal Research Center, Agricultural Research Service, USDA, Rd 313, Clay Center, NE 68933, USA
| | - M. Thomas P. Gilbert
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| | - Robert A. Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Erez L. Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - J. William O. Ballard
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, VIC 3086, Australia
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
7
|
Peres PHF, Luduvério DJ, Bernegossi AM, Galindo DJ, Nascimento GB, Oliveira ML, Sandoval EDP, Vozdova M, Kubickova S, Cernohorska H, Duarte JMB. Revalidation of Mazama rufa (Illiger 1815) (Artiodactyla: Cervidae) as a Distinct Species out of the Complex Mazama americana (Erxleben 1777). Front Genet 2022; 12:742870. [PMID: 34970296 PMCID: PMC8712859 DOI: 10.3389/fgene.2021.742870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The red brocket deer Mazama americana Erxleben, 1777 is considered a polyphyletic complex of cryptic species with wide chromosomal divergence. Evidence indicates that the observed chromosomal divergences result in reproductive isolation. The description of a neotype for M. americana allowed its genetic characterization and represented a comparative basis to resolve the taxonomic uncertainties of the group. Thus, we designated a neotype for the synonym Mazama rufa Illiger, 1815 and tested its recognition as a distinct species from the M. americana complex with the analysis of morphological, cytogenetic and molecular data. We also evaluated its distribution by sampling fecal DNA in the wild. Morphological data from craniometry and body biometry indicated an overlap of quantitative measurements between M. rufa and the entire M. americana complex. The phylogenetic hypothesis obtained through mtDNA confirmed the reciprocal monophyly relationship between M. americana and M. rufa, and both were identified as distinct molecular operational taxonomic units by the General Mixed Yule Coalescent species delimitation analysis. Finally, classic cytogenetic data and fluorescence in situ hybridization with whole chromosome painting probes showed M. rufa with a karyotype of 2n = 52, FN = 56. Comparative analysis indicate that at least fifteen rearrangements separate M. rufa and M. americana (sensu stricto) karyotypes, which confirmed their substantial chromosomal divergence. This divergence should represent an important reproductive barrier and allow its characterization as a distinct and valid species. Genetic analysis of fecal samples demonstrated a wide distribution of M. rufa in the South American continent through the Atlantic Forest, Cerrado and south region of Amazon. Thus, we conclude for the revalidation of M. rufa as a distinct species under the concept of biological isolation, with its karyotype as the main diagnostic character. The present work serves as a basis for the taxonomic review of the M. americana complex, which should be mainly based on cytogenetic characterization and directed towards a better sampling of the Amazon region, the evaluation of available names in the species synonymy and a multi-locus phylogenetic analysis.
Collapse
Affiliation(s)
- Pedro H F Peres
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Douglas J Luduvério
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - David J Galindo
- Faculty of Veterinary Medicine, National University of San Marcos (UNMSM), Lima, Peru
| | | | - Márcio L Oliveira
- Deer Research and Conservation Center (NUPECCE), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Rubes J. Anchoring the CerEla1.0 Genome Assembly to Red Deer ( Cervus elaphus) and Cattle ( Bos taurus) Chromosomes and Specification of Evolutionary Chromosome Rearrangements in Cervidae. Animals (Basel) 2021; 11:ani11092614. [PMID: 34573579 PMCID: PMC8465983 DOI: 10.3390/ani11092614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The red deer (Cervus elaphus) de novo genome assembly (CerEla1.0) has provided a great resource for genetic studies in various deer species. In this study, we used gene order comparisons between C. elaphus CerEla1.0 and B. taurus ARS-UCD1.2 genome assemblies and fluorescence in situ hybridization (FISH) with bovine BAC probes to verify the red deer-bovine chromosome relationships and anchor the CerEla1.0 C-scaffolds to karyotypes of both species. We showed the homology between bovine and deer chromosomes and determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds. Using a set of BAC probes, we were able to narrow the positions of evolutionary chromosome breakpoints defining the family Cervidae. In addition, we revealed several errors in the current CerEla1.0 genome assembly. Finally, we expanded our analysis to other Cervidae and confirmed the locations of the cervid evolutionary fissions and orientation of the fused chromosomes in eight cervid species. Our results can serve as a basis for necessary improvements of the red deer genome assembly and provide support to other genetic studies in Cervidae. Abstract The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.
Collapse
|
9
|
Galindo DJ, Vozdova M, Kubickova S, Cernohorska H, Bernegossi AM, Kadlcikova D, Rubes J, Duarte JMB. Sperm chromosome segregation of rob(4;16) and rob(4;16)inv(4) in the brown brocket deer (Mazama gouazoubira). Theriogenology 2021; 168:33-40. [PMID: 33845262 DOI: 10.1016/j.theriogenology.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The genus Mazama stands out among the Neotropical deer due to their wide intra and interspecific karyotypic diversification, which is associated with an accentuated chromosomal fragility. There are reports of heterozygous Robertsonian translocation (RT) carriers in a free-range population of Mazama gouazoubira (brown brocket deer), as well as in captive animals of this and other species of the genus. To analyze possible negative impacts of heterozygous chromosome rearrangements on reproductive fitness of the carriers, we performed an analysis of sperm meiotic segregation in four brown brocket bucks, carriers of a rob(4;16), and compared the results with those of a normal buck. We established a reliable FISH and sperm-FISH protocol for the brown brocket deer using bovine (Bos taurus; diploid number, 2n = 60) whole chromosome painting (WCP) and BAC probes. Using BAC probes, we revealed the presence of a paracentric inversion (PAI) of the fused chromosome 4 in two of the four analyzed RT carriers. The mean frequency of normal/balanced sperm in the translocation carriers was significantly lower than in the normal buck (94.78% vs 98.40%). The mean value of total unbalanced spermatozoa was almost doubled in the RT/PAI carriers (6.68%) when compared to RT carriers (3.76%), but the difference was not statistically significant. This study demonstrated the efficiency of FISH with bovine WCP and BAC probes in the characterization of chromosome rearrangements and gametic segregation patterns in brown brocket deer. Our results indicate a low to moderate increase in the rates of unbalanced meiotic segregation products in brown brocket bucks heterozygous for RT and RT/PAIs.
Collapse
Affiliation(s)
- D J Galindo
- Núcleo de Pesquisa e Conservação de Cervídeos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - NUPECCE/FCAV/UNESP, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - M Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621-00, Brno, Czech Republic
| | - S Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621-00, Brno, Czech Republic
| | - H Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, 621-00, Brno, Czech Republic
| | - A M Bernegossi
- Núcleo de Pesquisa e Conservação de Cervídeos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - NUPECCE/FCAV/UNESP, 14884-900, Jaboticabal, São Paulo, Brazil
| | - D Kadlcikova
- Central European Institute of Technology-Veterinary Research Institute, 621-00, Brno, Czech Republic
| | - J Rubes
- Central European Institute of Technology-Veterinary Research Institute, 621-00, Brno, Czech Republic
| | - J M B Duarte
- Núcleo de Pesquisa e Conservação de Cervídeos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - NUPECCE/FCAV/UNESP, 14884-900, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
10
|
Chromosomal Polymorphism and Speciation: The Case of the Genus Mazama (Cetartiodactyla; Cervidae). Genes (Basel) 2021; 12:genes12020165. [PMID: 33530376 PMCID: PMC7911811 DOI: 10.3390/genes12020165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chromosomal polymorphism plays a major role in speciation processes in mammals with high rates of karyotypic evolution, as observed in the family Cervidae. One remarkable example is the genus Mazama that comprises wide inter- and intra-specific chromosomal variability. To evaluate the impact of chromosomal polymorphisms as reproductive barriers within the genus Mazama, inter-specific hybrids between Mazama gouazoubira and Mazama nemorivaga (MGO × MNE) and intra-specific hybrids between cytotypes of Mazama americana (MAM) differing by a tandem (TF) or centric fusion (Robertsonian translocations—RT) were evaluated. MGO × MNE hybrid fertility was evaluated by the seminal quality and testicular histology. MAM hybrids estimation of the meiotic segregation products was performed by sperm-FISH analysis. MGO × MNE hybrids analyses showed different degrees of fertility reduction, from severe subfertility to complete sterility. Regarding MAM, RT, and TF carriers showed a mean value for alternate segregation rate of 97.74%, and 67.23%, and adjacent segregation rate of 1.80%, and 29.07%, respectively. Our results suggested an efficient post-zygotic barrier represented by severe fertility reduction for MGO × MNE and MAM with heterozygous TF. Nevertheless, RT did not show a severe effect on the reproductive fitness in MAM. Our data support the validity of MGO and MNE as different species and reveals cryptic species within MAM.
Collapse
|
11
|
Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H, Kadlcikova D, Musilová P, Duarte JM, Rubes J. Satellite DNA in Neotropical Deer Species. Genes (Basel) 2021; 12:genes12010123. [PMID: 33478071 PMCID: PMC7835801 DOI: 10.3390/genes12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +4205-3333-1422
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Petra Musilová
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Jose Mauricio Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| |
Collapse
|
12
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Martínková N, Rubes J. Sequence Analysis and FISH Mapping of Four Satellite DNA Families among Cervidae. Genes (Basel) 2020; 11:genes11050584. [PMID: 32456268 PMCID: PMC7288315 DOI: 10.3390/genes11050584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Centromeric and pericentromeric chromosome regions are occupied by satellite DNA. Satellite DNAs play essential roles in chromosome segregation, and, thanks to their extensive sequence variability, to some extent, they can also be used as phylogenetic markers. In this paper, we isolated and sequenced satellite DNA I-IV in 11 species of Cervidae. The obtained satellite DNA sequences and their chromosomal distribution were compared among the analysed representatives of cervid subfamilies Cervinae and Capreolinae. Only satI and satII sequences are probably present in all analysed species with high abundance. On the other hand, fluorescence in situ hybridisation (FISH) with satIII and satIV probes showed signals only in a part of the analysed species, indicating interspecies copy number variations. Several indices, including FISH patterns, the high guanine and cytosine (GC) content, and the presence of centromere protein B (CENP-B) binding motif, suggest that the satII DNA may represent the most important satellite DNA family that might be involved in the centromeric function in Cervidae. The absence or low intensity of satellite DNA FISH signals on biarmed chromosomes probably reflects the evolutionary reduction of heterochromatin following the formation of chromosome fusions. The phylogenetic trees constructed on the basis of the satellite I-IV DNA relationships generally support the present cervid taxonomy.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
- Correspondence: ; Tel.: +420-533-331-422
| | - Svatava Kubickova
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| | - Halina Cernohorska
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| | - Jan Fröhlich
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - Jiri Rubes
- Department of Genetics and Reproduction, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (J.F.); (J.R.)
| |
Collapse
|