1
|
Mallada B, Villalobos F, Donoso B, Casares R, Longhi G, Mendieta-Moreno JI, Jiménez-Martín A, Haïdour A, Seepersaud R, Rajagopal L, de la Torre B, Millán A, Cuerva JM. Single-Molecule Identification of the Isomers of a Lipidic Antibody Activator. J Phys Chem Lett 2024; 15:6935-6942. [PMID: 38935930 PMCID: PMC11247479 DOI: 10.1021/acs.jpclett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Molecular structural elucidation can be accomplished by different techniques, such as nuclear magnetic resonance or X-ray diffraction. However, the former does not give information about the three-dimensional atomic arrangement, and the latter needs crystallizable solid samples. An alternative is direct, real-space visualization of the molecules by cryogenic scanning tunneling microscopy (STM). This technique is usually limited to thermally robust molecules because an annealing step is required for sample deposition. A landmark development has been the coupling of STM with electrospray deposition (ESD), which smooths the process and widens the scope of the visualization technique. In this work, we present the on-surface characterization of air-, light-, and temperature-sensitive rhamnopolyene with relevance in molecular biology. Supported by theoretical calculations, we characterize two isomers of this flexible molecule, confirming the potential of the technique to inspect labile, non-crystallizable compounds.
Collapse
Affiliation(s)
- Benjamin Mallada
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Federico Villalobos
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Beatriz Donoso
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Raquel Casares
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Giovanna Longhi
- Dipartimento
di Medicina Molecolare e Traslazionale, Universitá di Brescia, Viale Europa 11, 25121 Brescia, Italy
| | - Jesús I. Mendieta-Moreno
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Alejandro Jiménez-Martín
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Ali Haïdour
- Unidad
de Resonancia Magnética Nuclear, Centro de Instrumentación
Científica, Universidad de Granada, Paseo Juan Osorio s/n, 18071 Granada, Spain
| | - Ravin Seepersaud
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Lakshmi Rajagopal
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98105, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98105, United States
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Alba Millán
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
3
|
Shumba P, Sura T, Moll K, Chakrakodi B, Tölken LA, Hoßmann J, Hoff KJ, Hyldegaard O, Nekludov M, Svensson M, Arnell P, Skrede S, Norrby-Teglund A, Siemens N. Neutrophil-derived reactive agents induce a transient SpeB negative phenotype in Streptococcus pyogenes. J Biomed Sci 2023; 30:52. [PMID: 37430325 DOI: 10.1186/s12929-023-00947-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection. A key driving force for this process is the bacterial Sda1 DNase. METHODS Bacterial infiltration, immune cell influx, tissue necrosis and inflammation in patient´s biopsies were determined using immunohistochemistry. SpeB secretion and activity by GAS post infections or challenges with reactive agents were determined via Western blot or casein agar and proteolytic activity assays, respectively. Proteome of GAS single colonies and neutrophil secretome were profiled, using mass spectrometry. RESULTS Here, we identify another strategy resulting in SpeB-negative variants, namely reversible abrogation of SpeB secretion triggered by neutrophil effector molecules. Analysis of NSTI patient tissue biopsies revealed that tissue inflammation, neutrophil influx, and degranulation positively correlate with increasing frequency of SpeB-negative GAS clones. Using single colony proteomics, we show that GAS isolated directly from tissue express but do not secrete SpeB. Once the tissue pressure is lifted, GAS regain SpeB secreting function. Neutrophils were identified as the main immune cells responsible for the observed phenotype. Subsequent analyses identified hydrogen peroxide and hypochlorous acid as reactive agents driving this phenotypic GAS adaptation to the tissue environment. SpeB-negative GAS show improved survival within neutrophils and induce increased degranulation. CONCLUSIONS Our findings provide new information about GAS fitness and heterogeneity in the soft tissue milieu and provide new potential targets for therapeutic intervention in NSTIs.
Collapse
Affiliation(s)
- Patience Shumba
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bhavya Chakrakodi
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Jörn Hoßmann
- Helmholtz Center for Infection Research, Brunswick, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Ole Hyldegaard
- Department of Anaesthesia, Head and Orthopedic Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nekludov
- Department of Anaesthesia, Surgical Services and Intensive Care, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Per Arnell
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
4
|
Furuta A, Coleman M, Casares R, Seepersaud R, Orvis A, Brokaw A, Quach P, Nguyen S, Sweeney E, Sharma K, Wallen G, Sanghavi R, Mateos-Gil J, Cuerva JM, Millán A, Rajagopal L. CD1 and iNKT cells mediate immune responses against the GBS hemolytic lipid toxin induced by a non-toxic analog. PLoS Pathog 2023; 19:e1011490. [PMID: 37384812 DOI: 10.1371/journal.ppat.1011490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Although hemolytic lipids have been discovered from many human pathogens including Group B Streptococcus (GBS), strategies that neutralize their function are lacking. GBS is a leading cause of pregnancy-associated neonatal infections, and adult GBS infections are on the rise. The GBS hemolytic lipid toxin or granadaene, is cytotoxic to many immune cells including T and B cells. We previously showed that mice immunized with a synthetic nontoxic analog of granadaene known as R-P4 had reduced bacterial dissemination during systemic infection. However, mechanisms important for R-P4 mediated immune protection was not understood. Here, we show that immune serum from R-P4-immunized mice facilitate GBS opsonophagocytic killing and protect naïve mice from GBS infection. Further, CD4+ T cells isolated from R-P4-immunized mice proliferated in response to R-P4 stimulation in a CD1d- and iNKT cell-dependent manner. Consistent with these observations, R-P4 immunized mice lacking CD1d or CD1d-restricted iNKT cells exhibit elevated bacterial burden. Additionally, adoptive transfer of iNKT cells from R-P4 vaccinated mice significantly reduced GBS dissemination compared to adjuvant controls. Finally, maternal R-P4 vaccination provided protection against ascending GBS infection during pregnancy. These findings are relevant in the development of therapeutic strategies targeting lipid cytotoxins.
Collapse
Affiliation(s)
- Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michelle Coleman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Raquel Casares
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Austyn Orvis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Shayla Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Erin Sweeney
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kavita Sharma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Grace Wallen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Rhea Sanghavi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jaime Mateos-Gil
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | | | - Alba Millán
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Dual RNA sequencing of group B Streptococcus-infected human monocytes reveals new insights into host-pathogen interactions and bacterial evasion of phagocytosis. Sci Rep 2023; 13:2137. [PMID: 36747074 PMCID: PMC9902490 DOI: 10.1038/s41598-023-28117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.
Collapse
|
6
|
Jahn K, Shumba P, Quach P, Müsken M, Wesche J, Greinacher A, Rajagopal L, Hammerschmidt S, Siemens N. Group B Streptococcal Hemolytic Pigment Impairs Platelet Function in a Two-Step Process. Cells 2022; 11:cells11101637. [PMID: 35626674 PMCID: PMC9139542 DOI: 10.3390/cells11101637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Group B streptococci (GBS) cause a range of invasive maternal-fetal diseases during pregnancy and post-partum. However, invasive infections in non-pregnant adults are constantly increasing. These include sepsis and streptococcal toxic shock syndrome, which are often complicated by systemic coagulation and thrombocytopenia. GBS express a hyper-hemolytic ornithine rhamnolipid pigment toxin with cytolytic and coagulatory activity. Here, we investigated the effects of GBS pigment on human platelets. Infections of platelets with pigmented GBS resulted initially in platelet activation, followed by necrotic cell death. Thus, this study shows that GBS pigment kills human platelets.
Collapse
Affiliation(s)
- Kristin Jahn
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17489 Greifswald, Germany; (K.J.); (P.S.)
| | - Patience Shumba
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17489 Greifswald, Germany; (K.J.); (P.S.)
| | - Phoenicia Quach
- Department of Global Health, University of Washington, Seattle, WA 98105, USA; (P.Q.); (L.R.)
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jan Wesche
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (J.W.); (A.G.)
| | - Andreas Greinacher
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (J.W.); (A.G.)
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA 98105, USA; (P.Q.); (L.R.)
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17489 Greifswald, Germany; (K.J.); (P.S.)
- Correspondence: (S.H.); (N.S.); Tel.: +49-3-834-420-5701 (S.H.); +49-3-834-420-5711 (N.S.)
| | - Nikolai Siemens
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17489 Greifswald, Germany; (K.J.); (P.S.)
- Correspondence: (S.H.); (N.S.); Tel.: +49-3-834-420-5701 (S.H.); +49-3-834-420-5711 (N.S.)
| |
Collapse
|
7
|
Disseminated intravascular coagulation as a complication after transvenous lead extraction for defibrillator associated endocarditis : A case report. HeartRhythm Case Rep 2022; 8:330-334. [PMID: 35607341 PMCID: PMC9123309 DOI: 10.1016/j.hrcr.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Egesten A, Herwald H. Some Like It Hot. J Innate Immun 2021; 13:321-322. [PMID: 34724673 DOI: 10.1159/000520270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
|
9
|
The Road Not Taken: Commensal or Virulent Pathogen. J Innate Immun 2020; 12:275-276. [PMID: 32585677 PMCID: PMC7383240 DOI: 10.1159/000509601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022] Open
|
10
|
Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection. Nat Commun 2020; 11:1502. [PMID: 32198389 PMCID: PMC7083881 DOI: 10.1038/s41467-020-15282-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Although certain microbial lipids are toxins, the structural features important for cytotoxicity remain unknown. Increased functional understanding is essential for developing therapeutics against toxic microbial lipids. Group B Streptococci (GBS) are bacteria associated with preterm births, stillbirths, and severe infections in neonates and adults. GBS produce a pigmented, cytotoxic lipid, known as granadaene. Despite its importance to all manifestations of GBS disease, studies towards understanding granadaene’s toxic activity are hindered by its instability and insolubility in purified form. Here, we report the synthesis and screening of lipid derivatives inspired by granadaene, which reveal features central to toxin function, namely the polyene chain length. Furthermore, we show that vaccination with a non-toxic synthetic analog confers the production of antibodies that inhibit granadaene-mediated hemolysis ex vivo and diminish GBS infection in vivo. This work provides unique structural and functional insight into granadaene and a strategy to mitigate GBS infection, which will be relevant to other toxic lipids encoded by human pathogens. Granadaene, produced by Group B Streptococcus (GBS), is a long polyene lipid involved in cellular toxicity and hemolytic activity. Here, the authors synthesize and characterize granadaene-like compounds and show that a non-toxic analog diminishes GBS infection in mice when incorporated into a vaccine formulation.
Collapse
|