1
|
Hagelstein I, Wessling L, Rochwarger A, Zekri L, Klimovich B, Tegeler CM, Jung G, Schürch CM, Salih HR, Lutz MS. Targeting CD276 for T cell-based immunotherapy of breast cancer. J Transl Med 2024; 22:902. [PMID: 39367484 PMCID: PMC11452943 DOI: 10.1186/s12967-024-05689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Christian M Schürch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Park R, Yu J, Shahzad M, Lee S, Ji JD. The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunol Res 2024; 72:526-537. [PMID: 38265550 DOI: 10.1007/s12026-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
B7-H3 is a member of the B7 superfamily and a putative inhibitory immune checkpoint molecule. Several early-phase clinical trials have reported promising anti-tumor activity and safety of anti-cancer drugs targeting B7-H3, suggesting that it may be a promising target for a potential next-generation immune checkpoint inhibitor. Despite ongoing clinical studies, most B7-H3-targeted drugs being currently investigated rely on direct cytotoxicity as their mechanisms of action rather than modulating its function as an immune checkpoint, at least in part due to its incompletely understood immune regulatory function. Recent studies have begun to elucidate the role of B7-H3 in regulating the tumor microenvironment (TME). Emerging evidence suggests that B7-H3 may regulate the interferon-STAT1 axis in the TME and promote immune suppression. Similarly, increasing evidence shows B7-H3 may be implicated in promoting M1 to M2 polarization of tumor-associated macrophages (TAMs). There is also accumulating evidence suggesting that B7-H3 may play a role in the heterotypic fusion of cancer stem cells and macrophages, thereby promoting tumor invasion and metastasis. Here, we review the recent advances in the understanding of B7-H3 cancer immunobiology with a focus on highlighting its potential role in the interferon priming of TAMs and the heterotypic fusion of TAMs with cancer stem cells and suggest future direction in elucidating its immune checkpoint function.
Collapse
Affiliation(s)
- Robin Park
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - James Yu
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Moazzam Shahzad
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Sunggon Lee
- Department of Internal Medicine, Korea University, Seoul, South Korea
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
3
|
Qi Y, Hu L, Ji C, Yang X, Yao J, Chen D, Yao Y. B7-H4 reduces the infiltration of CD8+T cells and induces their anti-tumor dysfunction in gliomas. Neoplasia 2024; 54:101007. [PMID: 38796932 PMCID: PMC11152750 DOI: 10.1016/j.neo.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
B7-H4 is a promising immune checkpoint molecule in tumor immunotherapy. Our previous study showed that high B7-H4 expression was strongly correlated with deficiency in tumor infiltrated lymphocytes (TILs) in glioma patients. On this basis, we investigated the impact of B7-H4 on CD8+TILs in gliomas and the associated molecular mechanism here. B7-H4-positive tumor samples (n=129) from our glioma cohort were used to assess B7-H4 expression and CD8+TIL quantification by immunohistochemistry. CD8+TILs from five glioma patients cultured with B7-H4 protein were used to evaluate anti-tumor dysfunction by flow cytometry and ELISpot. An orthotopic murine glioma model was used to investigate the role of B7-H4 in glioma CD8+TILs by immunohisto- chemistry and flow cytometry. CD8+TILs from glioma patients cultured with B7-H4 protein were used to explore the potential molecular mechanism by RNA sequencing and western blot. Our results showed that glioma CD8+TIL density was negatively correlated with B7-H4 expression both in glioma patient cohort (P < 0.05) and orthotopic glioma murine model (P < 0.01). B7-H4 also lowered the expression of CD137 and CD103 (P < 0.05 for both) in glioma CD8+TILs and reduced their secretion of the anti-tumor cytokines IFN-γ and TNF-α (P < 0.01 for both) in a dose-dependent manner. Furthermore, B7-H4 was found to induce early dysfunction of glioma CD8+TILs by downregulating the phosphorylation of AKT and eNOS (P < 0.05 for both). In conclusion, B7-H4 reduced the infiltration of glioma CD8+TILs and induced an anti-tumor dysfunction phenotype. B7-H4 may also impair the anti-tumor function of glioma CD8+TILs via the AKT-eNOS pathway. These results indicated that B7-H4 may serve as a potential target in future glioma immunotherapy.
Collapse
Affiliation(s)
- Ying Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Lang Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Chunxia Ji
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xinyu Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jiakai Yao
- Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Di Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Immunology Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
4
|
Dawidowicz M, Kot A, Mielcarska S, Psykała K, Kula A, Waniczek D, Świętochowska E. B7H4 Role in Solid Cancers: A Review of the Literature. Cancers (Basel) 2024; 16:2519. [PMID: 39061159 PMCID: PMC11275172 DOI: 10.3390/cancers16142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Anti-cancer immunotherapies entirely changed the therapeutic approach to oncological patients. However, despite the undeniable success of anti-PD-1, PD-L1, and CTLA-4 antibody treatments, their effectiveness is limited either by certain types of malignancies or by the arising problem of cancer resistance. B7H4 (aliases B7x, B7H4, B7S1, VTCN1) is a member of a B7 immune checkpoint family with a distinct expression pattern from classical immune checkpoint pathways. The growing amount of research results seem to support the thesis that B7H4 might be a very potent therapeutic target. B7H4 was demonstrated to promote tumour progression in immune "cold" tumours by promoting migration, proliferation of tumour cells, and cancer stem cell persistence. B7H4 suppresses T cell effector functions, including inflammatory cytokine production, cytolytic activity, proliferation of T cells, and promoting the polarisation of naïve CD4 T cells into induced Tregs. This review aimed to summarise the available information about B7H4, focusing in particular on clinical implications, immunological mechanisms, potential strategies for malignancy treatment, and ongoing clinical trials.
Collapse
Affiliation(s)
- Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Katarzyna Psykała
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
5
|
Lucà S, Accardo M, Campione S, Franco R. Immunotherapy in thymic epithelial tumors: tissue predictive biomarkers for immune checkpoint inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:465-476. [PMID: 38966177 PMCID: PMC11220306 DOI: 10.37349/etat.2024.00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 07/06/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare malignant neoplasms arising in the thymus gland. Nevertheless, TETs, including thymomas (TMs), thymic carcinomas (TCs), and thymic neuroendocrine neoplasms (TNENs), are the most common mediastinal malignancies overall. A multidisciplinary approach is required for the appropriate diagnostic and therapeutic management of TETs. To date, the main therapeutic strategies are largely depended on the stage of the tumor and they include surgery with or without neoadjuvant or adjuvant therapy, represented by platinum-based chemotherapy, radiotherapy or chemoradiotherapy. Immune checkpoint inhibitors (ICIs) are ongoing under evaluation in the advanced or metastatic diseases despite the challenges related to the very low tumor mutation burden (TMB) and the high incidence of immune-related adverse events in TETs. In this regard, predictive impact of tissue biomarkers expression such as programmed cell death ligand-1 (PD-L1), and other emerging biomarkers, as well as their optimal and shared interpretation are currently under evaluation in order to predict response rates to ICIs in TETs.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Severo Campione
- Department of Advanced Diagnostic-Therapeutic Technologies and Health Services Section of Anatomic Pathology, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
6
|
Wescott EC, Sun X, Gonzalez-Ericsson P, Hanna A, Taylor BC, Sanchez V, Bronzini J, Opalenik SR, Sanders ME, Wulfkuhle J, Gallagher RI, Gomez H, Isaacs C, Bharti V, Wilson JT, Ballinger TJ, Santa-Maria CA, Shah PD, Dees EC, Lehmann BD, Abramson VG, Hirst GL, Brown Swigart L, van ˈt Veer LJ, Esserman LJ, Petricoin EF, Pietenpol JA, Balko JM. Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1120-1134. [PMID: 38687247 PMCID: PMC11041871 DOI: 10.1158/2767-9764.crc-23-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Combinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers. We assessed murine and human breast cancer cells to identify regulation mechanisms of B7-H4 in vitro. We used an immunocompetent anti-PD-L1-sensitive orthotopic mammary cancer model and induced ectopic expression of B7-H4. We assessed therapy response and transcriptional changes at baseline and under treatment with anti-PD-L1. We observed B7-H4 was highly associated with epithelial cell status and transcription factors and found to be regulated by PI3K activity. EMT6 tumors with cell-surface B7-H4 expression were more resistant to immunotherapy. In addition, tumor-infiltrating immune cells had reduced immune activation signaling based on transcriptomic analysis. Paradoxically, in human breast cancer, B7-H4 expression was associated with survival benefit for patients with metastatic TNBC treated with carboplatin plus anti-PD-L1 and was associated with no change in response or survival for patients with early breast cancer receiving chemotherapy plus anti-PD-1. While B7-H4 induces tumor resistance to anti-PD-L1 in murine models, there are alternative mechanisms of signaling and function in human cancers. In addition, the strong correlation of B7-H4 to epithelial cell markers suggests a potential regulatory mechanism of B7-H4 independent of PD-L1. SIGNIFICANCE This translational study confirms the association of B7-H4 expression with a cold immune microenvironment in breast cancer and offers preclinical studies demonstrating a potential role for B7-H4 in suppressing response to checkpoint therapy. However, analysis of two clinical trials with checkpoint inhibitors in the early and metastatic settings argue against B7-H4 as being a mechanism of clinical resistance to checkpoints, with clear implications for its candidacy as a therapeutic target.
Collapse
Affiliation(s)
- Elizabeth C. Wescott
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaopeng Sun
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandie C. Taylor
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juliana Bronzini
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Susan R. Opalenik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda E. Sanders
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Claudine Isaacs
- Division of Hematology-Oncology, Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Vijaya Bharti
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Tarah J. Ballinger
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Payal D. Shah
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth C. Dees
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Brian D. Lehmann
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vandana G. Abramson
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gillian L. Hirst
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Laura J. van ˈt Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Laura J. Esserman
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Jennifer A. Pietenpol
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M. Balko
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
7
|
Cattaneo G, Ventin M, Arya S, Kontos F, Michelakos T, Sekigami Y, Cai L, Villani V, Sabbatino F, Chen F, Sadagopan A, Deshpande V, Moore PA, Ting DT, Bardeesy N, Wang X, Ferrone S, Ferrone CR. Interplay between B7-H3 and HLA class I in the clinical course of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 587:216713. [PMID: 38364961 PMCID: PMC11146152 DOI: 10.1016/j.canlet.2024.216713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Human leukocyte antigen (HLA) class I defects are associated with cancer progression. However, their prognostic significance is controversial and may be modulated by immune checkpoints. Here, we investigated whether the checkpoint B7-H3 modulates the relationship between HLA class I and pancreatic ductal adenocarcinoma (PDAC) prognosis. PDAC tumors were analyzed for the expression of B7-H3, HLA class I, HLA class II molecules, and for the presence of tumor-infiltrating immune cells. We observed defective HLA class I and HLA class II expressions in 75% and 59% of PDAC samples, respectively. HLA class I and B7-H3 expression were positively related at mRNA and protein level, potentially because of shared regulation by RELA, a sub-unit of NF-kB. High B7-H3 expression and low CD8+ T cell density were indicators of poor survival, while HLA class I was not. Defective HLA class I expression was associated with unfavorable survival only in patients with low B7-H3 expression. Favorable survival was observed only when HLA class I expression was high and B7-H3 expression low. Our results provide the rationale for targeting B7-H3 in patients with PDAC tumors displaying high HLA class I levels.
Collapse
Affiliation(s)
- Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States. https://twitter.com/GCattaneoPhD
| | - Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yurie Sekigami
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lei Cai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vincenzo Villani
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Francesco Sabbatino
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - David T Ting
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nabeel Bardeesy
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
8
|
Maralbashi S, Aslan C, Kahroba H, Asadi M, Soltani-Zangbar MS, Haghnavaz N, Jadidi F, Salari F, Kazemi T. Docosahexaenoic acid (DHA) impairs hypoxia-induced cellular and exosomal overexpression of immune-checkpoints and immunomodulatory molecules in different subtypes of breast cancer cells. BMC Nutr 2024; 10:41. [PMID: 38439112 PMCID: PMC10910708 DOI: 10.1186/s40795-024-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Tumor cells express immune-checkpoint molecules to suppress anti-tumor immune responses. In part, immune evasion takes place by secreting exosomes bearing immune-checkpoint and immunomodulatory molecules and their inducing and/or regulating agents e.g., microRNAs (miRs). This study aimed to evaluate the effects of omega-3 fatty acid, docosahexaenoic acid (DHA), on the expression of some selected immune-checkpoint and immunomodulatory molecules and their regulating miRs under both normoxic and hypoxic conditions in triple negative (TNBC) invasive and triple positive non-invasive breast cancer cell lines. METHODS MDA-MB-231 and BT-474 cells were treated with 100 µM DHA under hypoxic and normoxic conditions for 24 h. Exosomes were isolated by ultracentrifuge and confirmed by electron microscope and anti-CD9, -CD63, -CD81 immunoblotting. Total RNA from cells and exosomes were extracted and expression of CD39, CD73, CD47, CD80, PD-L1, B7-H3, B7-H4 genes and their related miRs were evaluated by quantitative Real-time PCR. RESULTS This study showed significant over-expression of immune-checkpoint and immunomodulatory molecules under hypoxic condition. Treatment with DHA resulted in a significant decrease in immune-checkpoint and immunomodulatory molecule expression as well as an upregulation of their regulatory miRNA expression. CONCLUSION DHA supplementation may be utilized in breast cancer therapy for down-regulation of cellular and exosomal immune escape-related molecules.
Collapse
Affiliation(s)
- Sepideh Maralbashi
- Applied drug research center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | | | - Navideh Haghnavaz
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Farhad Jadidi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Farhad Salari
- Department of Immunology, Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
9
|
Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. Ther Adv Vaccines Immunother 2023; 11:25151355231192043. [PMID: 37662491 PMCID: PMC10469281 DOI: 10.1177/25151355231192043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Checkpoint markers and immune checkpoint inhibitors have been increasingly identified and developed as potential immunotherapeutic targets in various human cancers. Despite valuable efforts to discover novel immune checkpoints and their ligands, the precise roles of their therapeutic functions, as well as the broad identification of their counterpart receptors, remain to be addressed. In this context, it has been suggested that various putative checkpoint receptors can be induced upon activation. In the tumor microenvironment, T cells, as crucial immune response against malignant diseases as well as other immune central effector cells, such as natural killer cells, are regulated via co-stimulatory or co-inhibitory signals from immune or tumor cells. Studies have shown that exposure of T cells to tumor antigens upregulates the expression of inhibitory checkpoint receptors, leading to T-cell dysfunction or exhaustion. Although targeting immune checkpoint regulators has shown relative clinical efficacy in some tumor types, most trials in the field of cancer immunotherapies have revealed unsatisfactory results due to de novo or adaptive resistance in cancer patients. To overcome these obstacles, combinational therapies with newly discovered inhibitory molecules or combined blockage of several checkpoints provide a rationale for further research. Moreover, precise identification of their receptors counterparts at crucial checkpoints is likely to promise effective therapies. In this review, we examine the prospects for the application of newly emerging checkpoints, such as T-cell immunoglobulin and mucin domain 3, lymphocyte activation gene-3, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Ig suppressor of T-cell activation (VISTA), new B7 family proteins, and B- and T-cell lymphocyte attenuator, in association with immunotherapy of malignancies. In addition, their clinical and biological significance is discussed, including their expression in various human cancers, along with their roles in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Simin Dasht Industrial Area, Karaj, Iran
- CinnaGen Research and Production Co., Alborz 3165933155, Iran
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| |
Collapse
|
10
|
Rasic P, Jeremic M, Jeremic R, Dusanovic Pjevic M, Rasic M, Djuricic SM, Milickovic M, Vukadin M, Mijovic T, Savic D. Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules 2023; 28:molecules28083356. [PMID: 37110590 PMCID: PMC10145344 DOI: 10.3390/molecules28083356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Recent scientific data recognize the B7-H3 checkpoint molecule as a potential target for immunotherapy of pediatric solid tumors (PSTs). B7-H3 is highly expressed in extracranial PSTs such as neuroblastoma, rhabdomyosarcoma, nephroblastoma, osteosarcoma, and Ewing sarcoma, whereas its expression is absent or very low in normal tissues and organs. The influence of B7-H3 on the biological behavior of malignant solid neoplasms of childhood is expressed through different molecular mechanisms, including stimulation of immune evasion and tumor invasion, and cell-cycle disruption. It has been shown that B7-H3 knockdown decreased tumor cell proliferation and migration, suppressed tumor growth, and enhanced anti-tumor immune response in some pediatric solid cancers. Antibody-drug conjugates targeting B7-H3 exhibited profound anti-tumor effects against preclinical models of pediatric solid malignancies. Moreover, B7-H3-targeting chimeric antigen receptor (CAR)-T cells demonstrated significant in vivo activity against different xenograft models of neuroblastoma, Ewing sarcoma, and osteosarcoma. Finally, clinical studies demonstrated the potent anti-tumor activity of B7-H3-targeting antibody-radioimmunoconjugates in metastatic neuroblastoma. This review summarizes the established data from various PST-related studies, including in vitro, in vivo, and clinical research, and explains all the benefits and potential obstacles of targeting B7-H3 by novel immunotherapeutic agents designed to treat malignant extracranial solid tumors of childhood.
Collapse
Affiliation(s)
- Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Marija Jeremic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Jeremic
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Slavisa M Djuricic
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Vukadin
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Djordje Savic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer 2023; 22:43. [PMID: 36859240 PMCID: PMC9979440 DOI: 10.1186/s12943-023-01751-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
B7-H3 (CD276), a member of the B7 family of proteins, is a key player in cancer progression. This immune checkpoint molecule is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. In addition to its immune checkpoint function, B7-H3 has been linked to tumor cell proliferation, metastasis, and therapeutic resistance. Furthermore, its drastic difference in protein expression levels between normal and tumor tissues suggests that targeting B7-H3 with drugs would lead to cancer-specific toxicity, minimizing harm to healthy cells. These properties make B7-H3 a promising target for cancer therapy.Recently, important advances in B7-H3 research and drug development have been reported, and these new findings, including its involvement in cellular metabolic reprograming, cancer stem cell enrichment, senescence and obesity, have expanded our knowledge and understanding of this molecule, which is important in guiding future strategies for targeting B7-H3. In this review, we briefly discuss the biology and function of B7-H3 in cancer development. We emphasize more on the latest findings and their underlying mechanisms to reflect the new advances in B7-H3 research. In addition, we discuss the new improvements of B-H3 inhibitors in cancer drug development.
Collapse
Affiliation(s)
- Ayechew Adera Getu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Yan X, Hong B, Feng J, Jin Y, Chen M, Li F, Qian Y. B7-H4 is a potential diagnostic and prognostic biomarker in colorectal cancer and correlates with the epithelial-mesenchymal transition. BMC Cancer 2022; 22:1053. [PMID: 36217128 PMCID: PMC9549643 DOI: 10.1186/s12885-022-10159-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background As a negative co-stimulatory molecule of the B7 family, B7-H4 has recently attracted increased attention. However, the clinical value of B7-H4 in colorectal cancer (CRC) remains controversial and requires further investigation. This study aimed to investigate the role of B7-H4 in the clinical diagnosis and survival prognosis of CRC. Methods The relationships between B7-H4 expression, immune cell infiltration, epithelial-mesenchymal transition (EMT), clinicopathological features, and survival prognosis were determined through the TCGA database and verified in a large CRC cohort (n = 1118). Results The results showed the level of B7-H4 mRNA expression was significantly increased in the CRC tumor tissues compared with normal tissues (P < 0.001). Immunohistochemistry showed that B7-H4 protein expression was also up-regulated in CRC. The positive rate of B7-H4 in CRC tumor tissues was 76.38%, which was significantly higher than that in non-tumor tissues (P < 0.001). Overexpression of B7-H4 was positively correlated with lymph node metastasis, advanced TNM stage, and poor tumor differentiation (P = 0.012; 0.009; 0.014). Prognostic analysis showed high B7-H4 expression was associated with significantly shorter OS. Multivariate analysis demonstrated the risk of death in CRC patients with high B7-H4 expression is 1.487 times that of low B7-H4 expression. In addition, B7-H4 expression was negatively correlated with the epithelial marker E-cadherin (P < 0.001) and positively correlated with the mesenchymal marker vimentin (P < 0.001) in CRC tissues. However, B7-H4 expression was not associated with the immunosuppressive microenvironment in CRC. Conclusion B7-H4 may represent a potential biomarker for the diagnosis and prognosis of CRC and enhance CRC invasion by promoting EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10159-5.
Collapse
Affiliation(s)
- Xiaotian Yan
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jie Feng
- Department of Blood Transfusion, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yuanqing Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Mengting Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Fugang Li
- Shanghai Upper Bio Tech Pharma Company Limited, Shanghai, 201201, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
14
|
Chen L, Chen F, Niu H, Li J, Pu Y, Yang C, Wang Y, Huang R, Li K, Lei Y, Huang Y. Chimeric Antigen Receptor (CAR)-T Cell Immunotherapy Against Thoracic Malignancies: Challenges and Opportunities. Front Immunol 2022; 13:871661. [PMID: 35911706 PMCID: PMC9334018 DOI: 10.3389/fimmu.2022.871661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fukun Chen
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Huatao Niu
- Department of Neurosurgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yue Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
15
|
Singhal SK, Byun JS, Yan T, Yancey R, Caban A, Gil Hernandez S, Bufford S, Hewitt SM, Winfield J, Pradhan JS, Mustkov V, McDonald JA, Pérez-Stable EJ, Napoles AM, Vohra N, De Siervi A, Yates C, Davis MB, Yang M, Tsai YC, Weissman AM, Gardner K. Protein expression of the gp78 E3-ligase predicts poor breast cancer outcome based on race. JCI Insight 2022; 7:157465. [PMID: 35639484 PMCID: PMC9310521 DOI: 10.1172/jci.insight.157465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Women of African ancestry suffer higher rates of breast cancer mortality compared to all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated degradation (ERAD) E3 ubiquitin ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER-positive and ER-negative tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer new insights into our understanding of racial differences in breast cancer outcomes.
Collapse
Affiliation(s)
- Sandeep K Singhal
- Department of Pathology, University of North Dakota, Grand Forks, United States of America
| | - Jung S Byun
- Intramural Research Program, National Institutes of Minority Health and Health Disparities, Bethesda, United States of America
| | - Tingfen Yan
- Intramural Research Program, National Institutes of Minority Health and Health Disparities, Bethesda, United States of America
| | - Ryan Yancey
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States of America
| | - Ambar Caban
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States of America
| | - Sara Gil Hernandez
- Intramural Research Program, National Institutes of Minority Health and Health Disparities, Bethesda, United States of America
| | - Sediqua Bufford
- Masters of Science Biotechnology, Morehouse School of Medicine, Atlanta, United States of America
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States of America
| | - Joy Winfield
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States of America
| | - Jaya Sarin Pradhan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States of America
| | - Vesco Mustkov
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States of America
| | - Jasmine A McDonald
- Department of Epidemiology, Columbia University Medical Center, New York, United States of America
| | - Eliseo J Pérez-Stable
- Intramural Research Program, National Institutes of Minority Health and Health Disparities, Bethesda, United States of America
| | - Anna Maria Napoles
- Intramural Research Program, National Institutes of Minority Health and Health Disparities, Bethesda, United States of America
| | - Nasreen Vohra
- Brody School of Medicine, East Carolina University, Greenville, United States of America
| | - Adriana De Siervi
- Directora del Laboratorio de Oncología Molecular y Nuevos Blancos Terapéut, CONICET, Buenos Aiers, Argentina
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, United States of America
| | - Melissa B Davis
- Department of Surgery (Breast Surgery & Oncology), Weill Cornell Medicine, New York, United States of America
| | - Mei Yang
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, United States of America
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, United States of America
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States of America
| |
Collapse
|
16
|
Kim NI, Park MH, Cho N, Lee JS. Comparison of the Clinicopathologic Features and T-Cell Infiltration of B7-H3 and B7-H4 Expression in Triple-negative Breast Cancer Subtypes. Appl Immunohistochem Mol Morphol 2022; 30:246-256. [PMID: 35384874 PMCID: PMC8989634 DOI: 10.1097/pai.0000000000001001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
Previously we revealed an upregulated expression of B7-H3 and B7-H4 mRNA and protein in breast cancer, including triple-negative breast cancer (TNBC). However, little is known regarding the clinical impact and value of B7-H3 and B7-H4 in TNBC subtypes. Thus, this study evaluated the clinicopathologic effects of B7-H3 and B7-H4 mRNA and protein expression according to the TNBC subtypes. RNAscope in situ hybridization and immunohistochemistry of B7-H3 and B7-H4 was done for 186 TNBC samples using tissue microarray. Immunohistochemistry was also performed for TNBC molecular subtype-surrogate markers, CD3, and CD8. TNBCs were classified into basal-like (BL) (64.5%), luminal androgen receptor (10.8%), and unclassifiable (24.7%) subtypes. Tumor B7-H4 mRNA expression was associated with younger age at the initial diagnosis and with molecular TNBC subtypes. Expression of B7-H3 mRNA and protein in the tumor cells was negatively correlated with CD3+ and CD8+ T-cell infiltration density in the tumor and/or stromal region of TNBCs and their subtypes. High stromal B7-H3 mRNA expression was associated with poor disease-free and overall survival in the TNBCs and with overall survival in the unclassifiable subtype. Stromal B7-H3 mRNA expression was independently associated with overall survival and disease-free survival in the TNBCs and BL subtype, respectively. Our results indicate the importance of the stromal expression of B7-H3 mRNA as a prognostic factor in the TNBCs and BL subtype. The inverse relationship between B7-H3 expression and CD3+ and CD8+ T-lymphocyte infiltration represents a promising target for immunotherapy for the TNBCs, especially the BL subtype.
Collapse
Affiliation(s)
| | - Min Ho Park
- Surgery, Chonnam National University Medical School
| | - NamKi Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | | |
Collapse
|
17
|
Wang S, Zhang X, Ning H, Dong S, Wang G, Sun R. B7 homolog 3 induces lung metastasis of breast cancer through Raf/MEK/ERK axis. Breast Cancer Res Treat 2022; 193:405-416. [PMID: 35312883 DOI: 10.1007/s10549-022-06520-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE The essential action of B7 homolog 3 (B7-H3) in different diseases and cancers has been documented. We here focused on its role in breast cancer through the Raf/MEK/ERK axis regarding lung metastasis. METHODS Expression pattern of B7-H3 was determined in breast cancer tissues and cells with its correlation with prognosis analyzed. Then, through transfection of lentivirus vector expressing B7-H3-shRNA, overexpression vector of B7-H3 (B7-H3-LV), U0126 (small molecule inhibitor of MEK), or PD98059 (small molecule inhibitor of ERK), the in vitro and in vivo effects of B7-H3 in breast cancer cell biological processes, and lung metastasis were analyzed in relation to the Raf/MEK/ERK axis. RESULTS We discovered elevated B7-H3 in breast cancer and its elevation associated with poor prognosis. B7-H3 promoted the malignant properties of breast cancer cells, accompanied with increased N-cadherin and vimentin and reduced E-cadherin. Additionally, overexpression of B7-H3 accelerated the lung metastasis in breast cancer in vivo. All the above promoting action of B7-H3 was achieved through activation of the Raf/MEK/ERK signaling pathway. CONCLUSION Taken together, B7-H3 can promote lung metastasis in breast cancer through activation of the Raf/MEK/ERK axis.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong Province, China
| | - Xinyan Zhang
- Department of Intervention, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, 264200, China
| | - Houfa Ning
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China
| | - Senyi Dong
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China
| | - Guangzhi Wang
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China.
| | - Ruimei Sun
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong Province, China.
| |
Collapse
|
18
|
Si S, Wang L, Cao H, Xu Y, Zhan Q. Co-deficiency of B7-H3 and B7-H4 identifies high CD8 + T cell infiltration and better prognosis in pancreatic cancer. BMC Cancer 2022; 22:211. [PMID: 35219310 PMCID: PMC8881843 DOI: 10.1186/s12885-022-09294-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Background Immunotherapy is a novel hotspot for the treatment of pancreatic adenocarcinoma (PAAD). However, potential biomarkers which could identify the inflamed tumor microenvironment (TME) are urgently required. Methods In the present study, we measured the levels of B7-H3, B7-H4, and major tumor-infiltrating immune cells (TIICs) using bioinformatics analyses and immunohistochemistry (IHC) staining on PAAD samples represented in the tissue microarray (TMA) format. Statistical analysis and figures exhibition were performed using R 4.1.0, SPSS 26.0, and GraphPad Prism 6.0. Results B7-H3 and B7-H4 were up-regulated in PAAD compared with para-tumor tissues, and their expression exhibited no tight correlation in PAAD tissues. B7-H3 and B7-H4 were lowly expressed in well-differentiated PAAD tissues and correlated with poorly differentiated grades. Besides, single B7-H3 or B7-H4 expression exhibited limited prognostic value, but co-deficiency of B7-H3 and B7-H4 predicted a better prognosis in PAAD. Moreover, co-deficiency of B7-H3 and B7-H4 indicated immuno-hot tumors with high CD8 + T cell infiltration. Conclusions Overall, combined B7-H3 and B7-H4 expression is a promising stratification strategy to assess prognosis and immunogenicity in PAAD, which could be used as a novel classifier in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09294-w.
Collapse
|
19
|
Yan X, Feng J, Hong B, Qian Y. The Expression of PD-L1 and B7-H4 in Thymic Epithelial Tumor and Its Relationship With Tumor Immune-Infiltrating Cells. Front Oncol 2021; 11:662010. [PMID: 34307135 PMCID: PMC8297388 DOI: 10.3389/fonc.2021.662010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background PD-L1 and B7-H4 have been reported to be expressed in various malignancies and are considered as promising prognostic factors and potential immunotherapy targets. Methods We analyzed the correlation between the expression of PD-L1 and B7-H4 transcriptomes and clinicopathological characteristics in 121 TET patients from The Cancer Genome Atlas (TCGA) database. The immune-infiltration levels in the TET microenvironment were estimated using ssGSEA and quanTiseq algorithms. We collected 80 TET cases from 2008 to 2015. PD-L1、B7-H4、FOXP3 and CD163 protein expression in tumor tissues were detected by immunohistochemistry. Results TCGA database showed PD-L1 mRNA levels can predict the OS (P = 0.018) and DFS (P = 0.033) of TET patients. B7-H4 mRNA levels were positively related to the World Health Organization (WHO) pathological classification (P = 0.003) but not correlated with patient prognosis. Immune infiltration analysis showed PD-L1 is positively correlated with Tregs and M2 macrophages, B7-H4 is positively correlated with Tregs. Patients with high PD-L1 and Tregs or M2 macrophages, high B7-H4 and Tregs had a worse prognosis. Immunohistochemistry showed PD-L1 expression was positively correlated with the WHO pathological classification and Masaoka stage (P = 0.025, 0.003) and high PD-L1 expression can predict the poor OS of patients (P = 0.043); B7-H4 was also positively correlated with WHO pathological classification and Masaoka stage (P = 0.036, 0.049). However, B7-H4 expression did not correlate with patient prognosis. Evaluation of co-expression patterns showed TET patients with a high-grade WHO pathological classification harbored a 44.4% co-expression of PD-L1 and B7-H4. In addition, we found the expression level of PD-L1 is positively correlated with FOXP3 and CD163 (P = 0.004, P = 0.029) and B7-H4 is positively correlated with FOXP3 (P = 0.037). High PD-L1 combined with High FOXP3 and High CD163, High B7-H4 combined with High FOXP3 can be used to predict the poor prognosis of TET patients (P = 0.026, 0.031, 0.028, respectively). Conclusion PD-L1 and B7-H4 were related to the aggressiveness of TET and their expression level can indicate the suppressive immune microenvironment. Combined with FOXP3 and CD163, PD-L1 and B7-H4 can indicate a poor prognosis of TET.
Collapse
Affiliation(s)
- Xiaotian Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Feng
- Department of Blood Transfusion, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Luo C, Xin H, Yin D, Zhao T, Hu Z, Zhou Z, Sun R, Yao N, Sun Q, Fan J, Huang X, Zhou J, Zhou S. Characterization of immune infiltration in sarcomatoid hepatocellular carcinoma. Aging (Albany NY) 2021; 13:15126-15138. [PMID: 34081621 PMCID: PMC8221324 DOI: 10.18632/aging.203076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Sarcomatoid hepatocellular carcinoma (sHCC) is a rare type of liver malignancy. Currently, the tumor immune features of sHCC are poorly understood. We recruited 31 patients with resected sHCC for whom tissue samples and complete clinicopathologic and follow-up data were available. To understand the immune infiltration of sHCC, immunohistochemical staining was performed on the resected sHCC samples to compare the expressions of programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), B7-H3, indoleamine 2,3-dioxygenase (IDO), lymphocyte-activation gene 3 (LAG-3), CD8, FOXP3, and CD68 in tumor and peritumoral tissues. Kaplan-Meier and Cox regression analyses were used to assess the predictive value of immune markers. Sarcomatoid components were characterized with significantly higher expression of PD-L1 and B7-H3 in tumor cells than in conventional HCC components, as well as in peritumoral tissue. Additionally, sarcomatoid components had a higher density of FOXP3+ and LAG-3+ cells and a lower density of CD8+ cells than conventional HCC components or peritumoral tissue. Higher expression of PD-L1 in tumor cells significantly correlated with higher densities of CD8+, PD-1+, and LAG-3+ cells. Increased tumor PD-L1 expression and decreased CD8+ T-cell density were associated with poor overall survival (OS) and disease-free survival (DFS) in patients of sHCC. These findings suggest further characterization on relative mechanism of sHCC immune infiltration may identify therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Chubin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Haoyang Xin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Dan Yin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Tongyi Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Zhiqiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Zhengjun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Rongqi Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Na Yao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Qiman Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Xiaowu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| | - Shaolai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Michelakos T, Kontos F, Barakat O, Maggs L, Schwab JH, Ferrone CR, Ferrone S. B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert Opin Biol Ther 2021; 21:587-602. [PMID: 33301369 PMCID: PMC8087627 DOI: 10.1080/14712598.2021.1862791] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Recent advances in immuno-oncology and bioengineering have rekindled the interest in monoclonal antibody (mAb)-based immunotherapies for malignancies. Crucial for their success is the identification of tumor antigens (TAs) that can serve as targets. B7-H3, a member of the B7 ligand family, represents such a TA. Although its exact functions and receptor(s) remain unclear, B7-H3 has predominantly a pro-tumorigenic effect mainly by suppressing the anti-tumor functions of T-cells.Areas covered: Initially we present a historical perspective on TA-specific antibodies for diagnosis and treatment of malignancies. Following a description of the TA requirements to be an attractive antibody-based immunotherapy target, we show that B7-H3 fulfills these criteria. We discuss its structure and functions. In a review and pooled analysis, we describe the limited B7-H3 expression in normal tissues and estimate B7-H3 expression frequency in tumors, tumor-associated vasculature and cancer initiating cells (CICs). Lastly, we discuss the association of B7-H3 expression in tumors with poor prognosis.Expert opinion: B7-H3 is an attractive target for mAb-based cancer immunotherapy. B7-H3-targeting strategies are expected to be highly effective and - importantly - safe. To fully exploit the diagnostic and therapeutic potential of B7-H3, its expression in pre-malignant lesions, serum, metastases, and CICs requires further investigation.
Collapse
Affiliation(s)
- Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Omar Barakat
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Quintana Á, Peg V, Prat A, Moliné T, Villacampa G, Paré L, Galván P, Dientsmann R, Schmid P, Curigliano G, Muñoz-Couselo E, Perez-García J, Marti M, Blanco-Heredia J, Anjos CD, Vazquez M, De Mattos-Arruda L, Cortés J. Immune analysis of lymph nodes in relation to the presence or absence of tumor infiltrating lymphocytes in triple-negative breast cancer. Eur J Cancer 2021; 148:134-145. [PMID: 33743482 DOI: 10.1016/j.ejca.2021.01.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with unmet medical needs. Several studies have proved that high levels of tumor infiltrating lymphocytes (TILs) at diagnosis of TNBC confer better prognosis and patients respond better to specific chemotherapies. Nonetheless, current evidence suggests that only 15% of TNBC patients have very high levels of TILs, and another 15% lacks TILs. One possible reason to explain why patients have low TILs at diagnosis is that lymphocytes might be deactivated by an immune checkpoint in local lymph nodes, provoking their retention in there as they are unresponsive to other immune stimuli. We have identified 15 high TILs (≥50%) and 20 low TILs (≤5%) TNBC patients with localised tumour (T1c-T2N0M0) and compared the protein expression of five immune checkpoints in lymph nodes. We have also performed a customised 50-immune gene NanoString expression panel, the NanoString 360 Breast Cancer panel, and whole exome sequencing for mutation and neoantigen load analyses. In low TILs, we observed higher expression of CTLA-4 in local lymph nodes, which could explain why lymphocytes get retained in there and do not migrate to tumour. These patients have also higher neoantigen load and higher expression of B7.H3 and B7.H4 in the tumour. In high TILs, we observed more PD-L1+ tumour cells and more expanded humoral response. These results could provide a strategy to revert low tumour immune infiltration at diagnosis of TNBC, improving their prognosis.
Collapse
Affiliation(s)
- Ángela Quintana
- Vall D'Hebrón Institute of Oncology, Barcelona, Spain; Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Vicente Peg
- Universidad Autónoma de Barcelona, Barcelona, Spain; Department of Pathology, Vall D'Hebron University Hospital, Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Aleix Prat
- Medical Oncology Hospital Clinic, Barcelona, Spain; Translational Genomics and Targeted Therapeutics Group, IDIBAPS, Barcelona, Spain
| | - Teresa Moliné
- Department of Pathology, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Guillermo Villacampa
- Oncology Data Science (ODysSey Group), Vall D'Hebron Institute of Oncology, Barcelona, Spain
| | - Laia Paré
- Translational Genomics and Targeted Therapeutics Group, IDIBAPS, Barcelona, Spain
| | - Patricia Galván
- Medical Oncology Hospital Clinic, Barcelona, Spain; Translational Genomics and Targeted Therapeutics Group, IDIBAPS, Barcelona, Spain
| | - Rodrigo Dientsmann
- Oncology Data Science (ODysSey Group), Vall D'Hebron Institute of Oncology, Barcelona, Spain
| | - Peter Schmid
- Barts Cancer Institute, Queen Mary University London, United Kingdom
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, And University of Milano, Milan, Italy
| | - Eva Muñoz-Couselo
- Vall D'Hebrón Institute of Oncology, Barcelona, Spain; Medical Oncology Hospital Vall D'Hebrón, Barcelona, Spain
| | | | - Merce Marti
- Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | - Carla Dos Anjos
- IrsiCaixa, Hospital Universitari Trias I Pujol, Badalona, Spain
| | | | | | - Javier Cortés
- Vall D'Hebrón Institute of Oncology, Barcelona, Spain; IOB Institute of Oncology, Quironsalud Group, Barcelona, Spain; IOB Institute of Oncology, Quironsalud Group, Madrid, Spain; Medica Scientia Innovation Research (MedSIR), Barcelona, Spain.
| |
Collapse
|
23
|
Zhou L, Jiang Z, Gu J, Gu W, Han S. B7-H3 and digestive system cancers. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers (DSC) are the most common cancers worldwide and often associated with poor prognosis because of their characteristics of invasive and metastatic. Thus, it is particularly necessary to find novel molecular targets for early diagnosis, as well as targeted treatment of DSC. B7-H3, which was previously referred to as a modulatory ligand that regulate T-cell-mediated immune reaction, is a B7-family member of co-stimulatory biomolecules, and in recent years it was found that its concentration was remarkably up modulated in serum, as well as tissues of DSC patients. Numerous studies have documented that B7-H3 has a vital function in the DSC. Herein, we summarize the current literature on diagnosis and prognosis potential of B7-H3 in DSC including those of the esophagus, gastric, liver, pancreas, and colon.
Collapse
Affiliation(s)
- Liyun Zhou
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Zhenhua Jiang
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Jing Gu
- Department of Dermatology, Henan Honliv Hospital, Changyuan
| | - Wenhui Gu
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| | - Shuangyin Han
- Zhengzhou University People’s Hospital, Zhengzhou
- Henan Provincial People’s Hospital, Zhengzhou
| |
Collapse
|