1
|
Rodriguez-Algarra F, Whittaker E, Del Castillo Del Rio S, Rakyan VK. Assessing Human Ribosomal DNA Variation and Its Association With Phenotypic Outcomes. Bioessays 2025:e202400232. [PMID: 39834111 DOI: 10.1002/bies.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Although genome-scale analyses have provided insights into the connection between genetic variability and complex human phenotypes, much trait variation is still not fully understood. Genetic variation within repetitive elements, such as the multi-copy, multi-locus ribosomal DNA (rDNA), has emerged as a potential contributor to trait variation. Whereas rDNA was long believed to be largely uniform within a species, recent studies have revealed substantial variability in the locus, both within and across individuals. This variation, which takes the form of copy number, structural arrangement, and sequence differences, has been found to be associated with human phenotypes. This review summarizes what is currently known about human rDNA variation, its causes, and its association with phenotypic outcomes, highlighting the technical challenges the field faces and the solutions proposed to address them. Finally, we suggest experimental approaches that can help clarify the elusive mechanisms underlying the phenotypic consequences of rDNA variation.
Collapse
Affiliation(s)
| | - Elliott Whittaker
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Mostovoy Y, Boone PM, Huang Y, Garimella KV, Tan KT, Russell BE, Salani M, de Esch CEF, Lemanski J, Curall B, Hauenstein J, Lucente D, Bowers T, DeSmet T, Gabriel S, Morton CC, Meyerson M, Hastie AR, Gusella J, Quintero-Rivera F, Brand H, Talkowski ME. Resolution of ring chromosomes, Robertsonian translocations, and complex structural variants from long-read sequencing and telomere-to-telomere assembly. Am J Hum Genet 2024; 111:2693-2706. [PMID: 39520989 PMCID: PMC11639088 DOI: 10.1016/j.ajhg.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Delineation of structural variants (SVs) at sequence resolution in highly repetitive genomic regions has long been intractable. The sequence properties, origins, and functional effects of classes of genomic rearrangements such as ring chromosomes and Robertsonian translocations thus remain unknown. To resolve these complex structures, we leveraged several recent milestones in the field, including (1) the emergence of long-read sequencing, (2) the gapless telomere-to-telomere (T2T) assembly, and (3) a tool (BigClipper) to discover chromosomal rearrangements from long reads. We applied these technologies across 13 cases with ring chromosomes, Robertsonian translocations, and complex SVs that were unresolved by short reads, followed by validation using optical genome mapping (OGM). Our analyses resolved 10 of 13 cases, including a Robertsonian translocation and all ring chromosomes. Multiple breakpoints were localized to genomic regions previously recalcitrant to sequencing such as acrocentric p-arms, ribosomal DNA arrays, and telomeric repeats, and involved complex structures such as a deletion-inversion and interchromosomal dispersed duplications. We further performed methylation profiling from long-read data to discover phased differential methylation in a gene promoter proximal to a ring fusion, suggesting a long-range position effect (LRPE) with heterochromatin spreading. Breakpoint sequences suggested mechanisms of SV formation such as microhomology-mediated and non-homologous end-joining, as well as non-allelic homologous recombination. These methods provide some of the first glimpses into the sequence resolution of Robertsonian translocations and illuminate the structural diversity of ring chromosomes and complex chromosomal rearrangements with implications for genome biology, prediction of LRPEs from integrated multi-omics technologies, and molecular diagnostics in rare disease cases.
Collapse
Affiliation(s)
- Yulia Mostovoy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Philip M Boone
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yongqing Huang
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiran V Garimella
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kar-Tong Tan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca E Russell
- Division of Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Celine E F de Esch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John Lemanski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin Curall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tera Bowers
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tim DeSmet
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacey Gabriel
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cynthia C Morton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Manchester Center for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - James Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fabiola Quintero-Rivera
- Departments of Pathology, Laboratory Medicine, and Pediatrics, Division of Genetic and Genomic Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgery Research Laboratory, Department of Pediatrics, Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Benn P, Merrion K. Chromosome segregation of human nonhomologous Robertsonian translocations: insights from preimplantation genetic testing. Eur J Hum Genet 2024:10.1038/s41431-024-01693-w. [PMID: 39341985 DOI: 10.1038/s41431-024-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Robertsonian translocations (robs) are associated with a high risk for unbalanced segregations. Preimplantation Genetic Testing (PGT) offers an early opportunity to evaluate segregation patterns and selection against chromosome imbalances. The objective of this study was to evaluate the chromosome complements in blastocysts for male and female rob carriers and provide information useful in PGT counseling for rob carriers. PGT results were reviewed for 296 couples where a balanced and nonhomologous rob was present in one member of the couple. All embryos had day 5/6 trophectoderm biopsy and SNP-based PGT. The study included 2235 blastocysts, of which 2151 (96.2%) had results. Significantly fewer blastocysts were available for female rob carriers (mean 4.60/IVF cycle) compared to males (5.49/cycle). Male carriers were more likely to have blastocysts with a normal/balanced chromosome complement; 84.8% versus 62.8% (P < 0.00001). Male carriers had fewer blastocysts with monosomy (60/152, 39.5%) compared to female carriers (218/396, 55.1%) (P = 0.001). Twenty-one (1%) blastocysts showed 3:0 segregation; these were mostly double trisomies and derived from female carriers. Differences between chromosome complements for male versus female carriers suggest that selection against unbalanced forms may occur during spermatogenesis. Six blastocyst samples showed an unexpected ("noncanonical") combination of trisomy and monosomy. One case of uniparental disomy was identified. For female carriers, there was no association between unbalanced segregation and parental age but for male carriers, there was an inverse association. PGT is a highly beneficial option for rob carriers and patients can be counseled using our estimates for the chance of at least one normal/balanced embryo.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
4
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
5
|
De Falco A, Gambale A, Pinelli M, Suero T, De Falco L, Iolascon A, Martone S. Trisomy 21 with Maternally Inherited Balanced Translocation (15q;22q) in a Female Fetus: A Rare Case of Probable Interchromosomal Effect. Cells 2024; 13:1078. [PMID: 38994932 PMCID: PMC11240558 DOI: 10.3390/cells13131078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Chromosomal rearrangements can interfere with the disjunction and segregation of other chromosome pairs not involved in the rearrangements, promoting the occurrence of numerical abnormalities in resulting gametes and predisposition to trisomy in offspring. This phenomenon of interference is known as the interchromosomal effect (ICE). Here we report a prenatal case potentially generated by ICE. The first-trimester screening ultrasound of the pregnant woman was normal, but the NIPT indicated a high risk for three copies of chromosome 21, thus suspecting trisomy 21 (T21). After a comprehensive clinical evaluation and genetic counseling, the couple decided to undergo amniocentesis. The prenatal karyotype confirmed T21 but also showed a balanced translocation between the long arm of chromosome 15 (q22) and the long arm of chromosome 22. The parents' karyotypes also showed that the mother had the 15;22 translocation. We reviewed T21 screening methods, and we performed a literature review on ICE, a generally overlooked phenomenon. We observed that ours is the first report of a prenatal case potentially due to ICE derived from the mother. The recurrence risk of aneuploidy in the offspring of translocated individuals is likely slightly increased, but it is not possible to estimate to what extent. In addition to supporting observations, there are still open questions such as, how frequent is ICE? How much is the aneuploidy risk altered by ICE?
Collapse
Affiliation(s)
- Alessandro De Falco
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Antonella Gambale
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Michele Pinelli
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Teresa Suero
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy;
| | - Luigia De Falco
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy;
| | - Achille Iolascon
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Stefania Martone
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
Gerton JL. A working model for the formation of Robertsonian chromosomes. J Cell Sci 2024; 137:jcs261912. [PMID: 38606789 PMCID: PMC11057876 DOI: 10.1242/jcs.261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.
Collapse
|
7
|
Yu H, Yau SST. Automated recognition of chromosome fusion using an alignment-free natural vector method. Front Genet 2024; 15:1364951. [PMID: 38572414 PMCID: PMC10987741 DOI: 10.3389/fgene.2024.1364951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Chromosomal fusion is a significant form of structural variation, but research into algorithms for its identification has been limited. Most existing methods rely on synteny analysis, which necessitates manual annotations and always involves inefficient sequence alignments. In this paper, we present a novel alignment-free algorithm for chromosomal fusion recognition. Our method transforms the problem into a series of assignment problems using natural vectors and efficiently solves them with the Kuhn-Munkres algorithm. When applied to the human/gorilla and swamp buffalo/river buffalo datasets, our algorithm successfully and efficiently identifies chromosomal fusion events. Notably, our approach offers several advantages, including higher processing speeds by eliminating time-consuming alignments and removing the need for manual annotations. By an alignment-free perspective, our algorithm initially considers entire chromosomes instead of fragments to identify chromosomal structural variations, offering substantial potential to advance research in this field.
Collapse
Affiliation(s)
- Hongyu Yu
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
- Yanqi Lake Beijing Institute of Mathematical Science and Applications (BIMSA), Beijing, China
| |
Collapse
|
8
|
Lu W, Zhou J, Rao H, Yuan H, Huang S, Liu Y, Yang B. A Retrospective Analysis of Robertsonian Translocations from a Single Center in China. Reprod Sci 2024; 31:851-856. [PMID: 37932552 PMCID: PMC10912152 DOI: 10.1007/s43032-023-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Robertsonian translocations (ROBs) are the most common structural chromosomal abnormalities in the general population, with an estimated incidence rate of 1/1000 births. In this study, we retrospectively analyzed the cases of ROBs from September 2015 to August 2022 and totally identified ROB carriers from 84,569 specimens karyotyped in a single accredited laboratory in China, including 189 cases of balanced ROBs and 3 of mosaic ROBs. Microsoft Excel and descriptive statistics were used to record and analyze the collected data. The male/female ratio of ROBs is 1/1.29, with der(13;14) and der(14;21) being the main karyotypes. Among the 192 patients, 7 were lost to follow-up, 82 had given birth, and 103 were childless (such as miscarriage, fetal chromosomal abnormalities, in vitro fertilization (IVF) failure, or divorce). A total of 44 amniocenteses were performed in 42 couples; ROB cases with natural pregnancies showed that the normal karyotype and balanced ROBs of fetal accounted for 66.67% (16/24), while the results of assisted pregnancies showed 90.00% (18/20). This study represents the largest collections of ROBs in Jiangxi population and reminder that the ROB carriers can achieve the ideal outcome for pregnancy with the appropriate genetic guidance and assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Wan Lu
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huihua Rao
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China.
| | - Bicheng Yang
- Medical Genetic Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
10
|
Kozmin SG, Dominska M, Zheng DQ, Petes TD. Splitting the yeast centromere by recombination. Nucleic Acids Res 2024; 52:690-707. [PMID: 37994724 PMCID: PMC10810202 DOI: 10.1093/nar/gkad1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Although fusions between the centromeres of different human chromosomes have been observed cytologically in cancer cells, since the centromeres are long arrays of satellite sequences, the details of these fusions have been difficult to investigate. We developed methods of detecting recombination within the centromeres of the yeast Saccharomyces cerevisiae (intercentromere recombination). These events occur at similar rates (about 10-8/cell division) between two active or two inactive centromeres. We mapped the breakpoints of most of the recombination events to a region of 43 base pairs of uninterrupted homology between the two centromeres. By whole-genome DNA sequencing, we showed that most (>90%) of the events occur by non-reciprocal recombination (gene conversion/break-induced replication). We also found that intercentromere recombination can involve non-homologous chromosome, generating whole-arm translocations. In addition, intercentromere recombination is associated with very frequent chromosome missegregation. These observations support the conclusion that intercentromere recombination generally has negative genetic consequences.
Collapse
Affiliation(s)
- Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Poot M. Methods of Detection and Mechanisms of Origin of Complex Structural Genome Variations. Methods Mol Biol 2024; 2825:39-65. [PMID: 38913302 DOI: 10.1007/978-1-0716-3946-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Based on classical karyotyping, structural genome variations (SVs) have generally been considered to be either "simple" (with one or two breakpoints) or "complex" (with more than two breakpoints). Studying the breakpoints of SVs at nucleotide resolution revealed additional, subtle structural variations, such that even "simple" SVs turned out to be "complex." Genome-wide sequencing methods, such as fosmid and paired-end mapping, short-read and long-read whole genome sequencing, and single-molecule optical mapping, also indicated that the number of SVs per individual was considerably larger than expected from karyotyping and high-resolution chromosomal array-based studies. Interestingly, SVs were detected in studies of cohorts of individuals without clinical phenotypes. The common denominator of all SVs appears to be a failure to accurately repair DNA double-strand breaks (DSBs) or to halt cell cycle progression if DSBs persist. This review discusses the various DSB response mechanisms during the mitotic cell cycle and during meiosis and their regulation. Emphasis is given to the molecular mechanisms involved in the formation of translocations, deletions, duplications, and inversions during or shortly after meiosis I. Recently, CRISPR-Cas9 studies have provided unexpected insights into the formation of translocations and chromothripsis by both breakage-fusion-bridge and micronucleus-dependent mechanisms.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
12
|
Kitamura K, Hoshino T, Okabe A, Fukuyo M, Rahmutulla B, Tanaka N, Kobayashi S, Tanaka T, Shida T, Ueda M, Minamoto T, Matsubara H, Kaneda A, Ishii H, Matsushita K. The Link of mRNA and rRNA Transcription by PUF60/FIR through TFIIH/P62 as a Novel Therapeutic Target for Cancer. Int J Mol Sci 2023; 24:17341. [PMID: 38139171 PMCID: PMC10743661 DOI: 10.3390/ijms242417341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tyuji Hoshino
- Department of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan;
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Nobuko Tanaka
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| | - Sohei Kobayashi
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Medical Technology and Sciences, Health and Sciences, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Takashi Shida
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan;
| | - Mashiro Ueda
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Hideshi Ishii
- Medical Data Science, Center of Medical Innovation and Translational Research (CoMIT), Osaka University, Osaka 565-0871, Japan;
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| |
Collapse
|
13
|
Abstract
The p-arms of the five human acrocentric chromosomes bear nucleolar organizer regions (NORs) comprising ribosomal gene (rDNA) repeats that are organized in a homogeneous tandem array and transcribed in a telomere-to-centromere direction. Precursor ribosomal RNA transcripts are processed and assembled into ribosomal subunits, the nucleolus being the physical manifestation of this process. I review current understanding of nucleolar chromosome biology and describe current exploration into a role for the NOR chromosomal context. Full DNA sequences for acrocentric p-arms are now emerging, aided by the current revolution in long-read sequencing and genome assembly. Acrocentric p-arms vary from 10.1 to 16.7 Mb, accounting for ∼2.2% of the genome. Bordering rDNA arrays, distal junctions, and proximal junctions are shared among the p-arms, with distal junctions showing evidence of functionality. The remaining p-arm sequences comprise multiple satellite DNA classes and segmental duplications that facilitate recombination between heterologous chromosomes, which is likely also involved in Robertsonian translocations.
Collapse
Affiliation(s)
- Brian McStay
- Centre for Chromosome Biology, College of Science and Engineering, University of Galway, Galway, Ireland;
| |
Collapse
|
14
|
Kindelay SM, Maggert KA. Under the magnifying glass: The ups and downs of rDNA copy number. Semin Cell Dev Biol 2023; 136:38-48. [PMID: 35595601 PMCID: PMC9976841 DOI: 10.1016/j.semcdb.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Talbert P, Henikoff S. Centromere drive: chromatin conflict in meiosis. Curr Opin Genet Dev 2022; 77:102005. [PMID: 36372007 DOI: 10.1016/j.gde.2022.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Centromeres are essential loci in eukaryotes that are necessary for the faithful segregation of chromosomes in mitosis and meiosis. Centromeres organize the kinetochore, the protein machine that attaches sister chromatids or homologous chromosomes to spindle microtubules and regulates their disjunction. Centromeres have both genetic and epigenetic determinants, which can come into conflict in asymmetric female meiosis in seed plants and animals. The centromere drive model was proposed to describe this conflict and explain how it leads to the rapid evolution of both centromeres and kinetochores. Recent studies confirm key aspects of the centromere drive model, clarify its mechanisms, and implicate rapid centromere/kinetochore evolution in hybrid inviability between species.
Collapse
Affiliation(s)
- Paul Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
16
|
Zhu S, Zhu Y, Zhang F, Wu J, Chen Y, Sun Y, Fu J, Wu J, Xiao M, Zhang S, Zhou J, Lei C, Jiang F. FISH analysis of numerical chromosomal abnormalities in the sperm of robertsonian translocation der(13; 14)(q10;q10) carriers. Front Genet 2022; 13:1010568. [PMID: 36238152 PMCID: PMC9551382 DOI: 10.3389/fgene.2022.1010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Fluorescence in situ hybridization analysis of numerical chromosomal abnormalities in the sperm of Robertsonian translocation der (13;14) (q10;q10) carriers has focused on a limited number of chromosomes mainly on chromosome 13, 18, 21, X, and Y. Here, we aimed to expand the analysis to all chromosomes by increasing the number of probes analyzed in fluorescence in situ hybridization. The incidence of numerical abnormalities of all chromosomes (1–22, X, and Y) was determined in sperm from 10 carriers of the Robertsonian translocation der(13;14)(q10;q10) and 10 normozoospermic males to fully assess the effect of translocation-derived chromosome on the segregation of all chromosomes during meiosis. Numerical abnormalities of the two translocated chromosomes were frequently detected in the sperm of der (13;14) translocation carriers, with an average frequency of 14.55% ± 6.00% for chromosome 13 and 13.27% ± 4.14% for chromosome 14. Numerical abnormalities of nontranslocated chromosomes, with an average frequency of 1.77% ± 0.62% (range, 1.16%–3.73%), was lower than that of translocated chromosome. However, the cumulative numerical abnormality of the 22 nontranslocated chromosomes was comparable to that of the two translocated chromosomes. Significantly increased numerical abnormalities in der(13;14) translocation carriers compared with those in normozoospermic males indicates the presence of translocation-derived chromosome disturbances, with translocated chromosomes being most affected; nontranslocated chromosomes were also affected, but to a lesser extent due to a mild interchromosomal effect.
Collapse
Affiliation(s)
- Saijuan Zhu
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Yong Zhu
- Human Sperm Bank, Fudan University, Shanghai, China
| | - Feng Zhang
- Human Sperm Bank, Fudan University, Shanghai, China
| | - Junping Wu
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Ying Chen
- Laboratory of Andrology, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Yijuan Sun
- Laboratory of Embryology, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Jing Fu
- Laboratory of Embryology, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Jiangnan Wu
- Department of Clinical Epidemiology, Clinical Research Unit, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Min Xiao
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Shuo Zhang
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Jing Zhou
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Caixia Lei
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
- *Correspondence: Caixia Lei, ; Feng Jiang,
| | - Feng Jiang
- Human Sperm Bank, Fudan University, Shanghai, China
- *Correspondence: Caixia Lei, ; Feng Jiang,
| |
Collapse
|
17
|
Tunç E, Ilgaz S. Robertsonian translocation (13;14) and its clinical manifestations: A literature review. Reprod Biomed Online 2022; 45:563-573. [PMID: 35810081 DOI: 10.1016/j.rbmo.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
18
|
Cockrell AJ, Gerton JL. Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function. Results Probl Cell Differ 2022; 70:551-580. [PMID: 36348121 DOI: 10.1007/978-3-031-06573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.
Collapse
Affiliation(s)
- Alexandria J Cockrell
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Mouse models of aneuploidy to understand chromosome disorders. Mamm Genome 2021; 33:157-168. [PMID: 34719726 PMCID: PMC8913467 DOI: 10.1007/s00335-021-09930-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
An organism or cell carrying a number of chromosomes that is not a multiple of the haploid count is in a state of aneuploidy. This condition results in significant changes in the level of expression of genes that are gained or lost from the aneuploid chromosome(s) and most cases in humans are not compatible with life. However, a few aneuploidies can lead to live births, typically associated with deleterious phenotypes. We do not understand why phenotypes arise from aneuploid syndromes in humans. Animal models have the potential to provide great insight, but less than a handful of mouse models of aneuploidy have been made, and no ideal system exists in which to study the effects of aneuploidy per se versus those of raised gene dosage. Here, we give an overview of human aneuploid syndromes, the effects on physiology of having an altered number of chromosomes and we present the currently available mouse models of aneuploidy, focusing on models of trisomy 21 (which causes Down syndrome) because this is the most common, and therefore, the most studied autosomal aneuploidy. Finally, we discuss the potential role of carrying an extra chromosome on aneuploid phenotypes, independent of changes in gene dosage, and methods by which this could be investigated further.
Collapse
|