1
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
2
|
Zhang L, Zhang W, Wang Y, Cai P, Li C, Shi Y, Athari SS, Li A. Allergo-immunopathology mechanism of thymol-inhibiting airway remodeling in asthmatic mice by regulating TGF-β/Smad3 pathway. Allergol Immunopathol (Madr) 2024; 52:51-58. [PMID: 39278851 DOI: 10.15586/aei.v52i5.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 09/18/2024]
Abstract
Allergic asthma is an important public health problem and is a complicated respiratory sickness that is characterized by bronchial inflammation, bronchoconstriction, and breathlessness. Asthma is orchestrated by type 2 immune response and remodeling is one of the important outputted problem in chronic asthma. Thymol is a naturally occurring monocyclic phenolic, it has a series of biological properties, and its immunomodulatory and anti-remodeling effects on allergic asthma were evaluated. The OVA-LPS-induced asthmatic mice were treated with thymol. Methacholine challenge test, eosinophil count, and levels of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, total and OVA-specific IgE levels in serum, remodeling factors, gene expression of TGF-β, Smad2, Smad3, and lung histopathology were done. Treatment with thymol could control AHR, eosinophil percentage levels of Th2 cytokines and Igs, remodeling factors, expression of TGF-β, Smad2 and Smad3 genes, inflammation, goblet cell hyperplasia, and mucus production in asthmatic mice. Thymol can control asthma pathogens and related remodeling and fibrosis bio-factors and can be a potential treatment of asthma.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Wenna Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yanan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Pei Cai
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Chaoran Li
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yan Shi
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ailing Li
- Department of Respiratory and Critical Care Medicine, Xi'an International Medical Center Hospital, Xi'an, 710100, China;
| |
Collapse
|
3
|
Li M, Jia D, Li J, Li Y, Wang Y, Wang Y, Xie W, Chen S. Scutellarin Alleviates Ovalbumin-Induced Airway Remodeling in Mice and TGF-β-Induced Pro-fibrotic Phenotype in Human Bronchial Epithelial Cells via MAPK and Smad2/3 Signaling Pathways. Inflammation 2024; 47:853-873. [PMID: 38168709 PMCID: PMC11147947 DOI: 10.1007/s10753-023-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-β1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-β1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-β1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Minfang Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dan Jia
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jinshuai Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqing Li
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yaqiong Wang
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yuting Wang
- Department of Respiratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, China.
| | - Wei Xie
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Sheng Chen
- Department of Respiratory Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
4
|
Yoshie S, Murono S, Hazama A. Approach for Elucidating the Molecular Mechanism of Epithelial to Mesenchymal Transition in Fibrosis of Asthmatic Airway Remodeling Focusing on Cl - Channels. Int J Mol Sci 2023; 25:289. [PMID: 38203460 PMCID: PMC10779031 DOI: 10.3390/ijms25010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Airway remodeling caused by asthma is characterized by structural changes of subepithelial fibrosis, goblet cell metaplasia, submucosal gland hyperplasia, smooth muscle cell hyperplasia, and angiogenesis, leading to symptoms such as dyspnea, which cause marked quality of life deterioration. In particular, fibrosis exacerbated by asthma progression is reportedly mediated by epithelial-mesenchymal transition (EMT). It is well known that the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling is closely associated with several signaling pathways, including the TGF-β1/Smad, TGF-β1/non-Smad, and Wnt/β-catenin signaling pathways. However, the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling has not yet been fully clarified. Given that Cl- transport through Cl- channels causes passive water flow and consequent changes in cell volume, these channels may be considered to play a key role in EMT, which is characterized by significant morphological changes. In the present article, we highlight how EMT, which causes fibrosis and carcinogenesis in various tissues, is strongly associated with activation or inactivation of Cl- channels and discuss whether Cl- channels can lead to elucidation of the molecular mechanism of EMT in fibrosis of asthmatic airway remodeling.
Collapse
Affiliation(s)
- Susumu Yoshie
- Department of Cellular and Integrative Physiology, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shigeyuki Murono
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akihiro Hazama
- Department of Cellular and Integrative Physiology, Graduate School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
5
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|