1
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Walczak-Sztulpa J, Wawrocka A, Kuszel Ł, Pietras P, Leśniczak-Staszak M, Andrusiewicz M, Krawczyński MR, Latos-Bieleńska A, Pawlak M, Grenda R, Materna-Kiryluk A, Oud MM, Szaflarski W. Ciliary phenotyping in renal epithelial cells in a cranioectodermal dysplasia patient with WDR35 variants. Front Mol Biosci 2023; 10:1285790. [PMID: 38161384 PMCID: PMC10756907 DOI: 10.3389/fmolb.2023.1285790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Cranioectodermal dysplasia (CED) is a skeletal autosomal recessive ciliopathy. The characteristic clinical features of CED are facial dysmorphisms, short limbs, narrow thorax, brachydactyly, ectodermal abnormalities, and renal insufficiency. Thus far, variants in six genes are known to be associated with this disorder: WDR35, IFT122, IFT140, IFT144, IFT52, and IFT43. Objective: The goal of this study was to perform cilium phenotyping in human urine-derived renal epithelial cells (hURECs) from a CED patient diagnosed with second-stage chronic kidney disease (CKD) and three unrelated and unaffected pediatric controls. Methods: Genetic analysis by WDR35 screening was performed in the affected individual. Cilium frequency and morphology, including cilium length, height, and width, were evaluated by immunofluorescence (IF) experiments in hURECs using two markers visualizing the ciliary axoneme (Acet-Tub and ARL13B) and the base of the cilium (PCNT). The IF results were analyzed using a confocal microscope and IMARIS software. Results: WDR35 analysis revealed the presence of a known nonsense p. (Leu641*) variant and a novel missense variant p. (Ala1027Thr). Moreover, comparative genomic hybridization analysis showed that the patient carries a microdeletion on chromosome 7q31.1. Ciliary phenotyping performed on hURECs showed morphological differences in the patient's cilia as compared to the three controls. The cilia of the CED patient were significantly wider and longer. Conclusion: The obtained results suggest that CED-related second-stage CKD might be associated with cilia abnormalities, as identified in renal epithelial cells from a CED patient harboring variants in WDR35. This study points out the added value of hURECs in functional testing for ciliopathies.
Collapse
Affiliation(s)
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Łukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Maciej R. Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Pawlak
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation, and Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Machteld M. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Zhang S, Shi K, Lyu N, Zhang Y, Liang G, Zhang W, Wang X, Wen H, Wen L, Ma H, Wang J, Yu X, Guan L. Genome-wide DNA methylation analysis in families with multiple individuals diagnosed with schizophrenia and intellectual disability. World J Biol Psychiatry 2023; 24:741-753. [PMID: 37017099 DOI: 10.1080/15622975.2023.2198595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Schizophrenia (SZ) and intellectual disability (ID) are both included in the continuum of neurodevelopmental disorders (NDDs). DNA methylation is known to be important in the occurrence of NDDs. The family study is conducive to eliminate the effects of relative epigenetic backgrounds, and to screen for differentially methylated positions (DMPs) and regions (DMRs) that are truly associated with NDDs. METHODS Four monozygotic twin families were recruited, and both twin individuals suffered from NDDs (either SZ, ID, or SZ plus ID). Genome-wide methylation analysis was performed in all samples and each family. DMPs and DMRs between NDD patients and unaffected individuals were identified. Functional and pathway enrichment analyses were performed on the annotated genes. RESULTS Two significant DMPs annotated to CYP2E1 were found in all samples. In Family One, 1476 DMPs mapped to 880 genes, and 162 DMRs overlapping with 153 unique genes were recognised. Our results suggested that the altered methylation levels of FYN, STAT3, RAC1, and NR4A2 were associated with the development of SZ and ID. Neurodevelopment and the immune system may participate in the occurrence of SZ and ID. CONCLUSIONS Our findings suggested that DNA methylation participated in the development of NDDs by affecting neurodevelopment and the immune system.
Collapse
Affiliation(s)
- Shengmin Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kaiyu Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Lyu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Beijing Anding Hospital, Beijing Key Laboratory of Mental Disorders, The National Clinical Research Centre for Mental Disorders, The Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yunshu Zhang
- The Sixth People's Hospital of Hebei Province, Hebei Mental Health Centre, Baoding, Hebei, China
| | | | - Wufang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Hong Wen
- The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Liping Wen
- Zigong Mental Health Centre, Zigong, Sichuan, China
| | - Hong Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lili Guan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
4
|
Hyblova M, Gnip A, Kucharik M, Budis J, Sekelska M, Minarik G. Maternal Copy Number Imbalances in Non-Invasive Prenatal Testing: Do They Matter? Diagnostics (Basel) 2022; 12:diagnostics12123056. [PMID: 36553064 PMCID: PMC9777446 DOI: 10.3390/diagnostics12123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) has become a routine practice in screening for common aneuploidies of chromosomes 21, 18, and 13 and gonosomes X and Y in fetuses worldwide since 2015 and has even expanded to include smaller subchromosomal events. In fact, the fetal fraction represents only a small proportion of cell-free DNA on a predominant background of maternal DNA. Unlike fetal findings that have to be confirmed using invasive testing, it has been well documented that NIPT provides information on maternal mosaicism, occult malignancies, and hidden health conditions due to copy number variations (CNVs) with diagnostic resolution. Although large duplications or deletions associated with certain medical conditions or syndromes are usually well recognized and easy to interpret, very little is known about small, relatively common copy number variations on the order of a few hundred kilobases and their potential impact on human health. We analyzed data from 6422 NIPT patient samples with a CNV detection resolution of 200 kb for the maternal genome and identified 942 distinct CNVs; 328 occurred repeatedly. We defined them as multiple occurring variants (MOVs). We scrutinized the most common ones, compared them with frequencies in the gnomAD SVs v2.1, dbVar, and DGV population databases, and analyzed them with an emphasis on genomic content and potential association with specific phenotypes.
Collapse
Affiliation(s)
- Michaela Hyblova
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Correspondence:
| | - Andrej Gnip
- Medirex a.s., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | | | - Jaroslav Budis
- Geneton s.r.o., Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Martina Sekelska
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| | - Gabriel Minarik
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| |
Collapse
|
5
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
6
|
Fonova EA, Tolmacheva EN, Kashevarova AA, Sazhenova EA, Nikitina TV, Lopatkina ME, Vasilyeva OY, Zarubin AА, Aleksandrova TN, Yuriev SY, Skryabin NA, Stepanov VA, Lebedev IN. Skewed X-Chromosome Inactivation as a Possible Marker of X-Linked CNV in Women with Pregnancy Loss. Cytogenet Genome Res 2022; 162:97-108. [PMID: 35636401 DOI: 10.1159/000524342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Skewed X-chromosome inactivation (sXCI) can be a marker of lethal genetic variants on the X chromosome in a woman since sXCI modifies the pathological phenotype. The aim of this study was to search for CNVs in women with miscarriages and sXCI. XCI was assayed using the classical method based on the amplification of highly polymorphic exon 1 of the androgen receptor (AR) gene. The XCI status was analysed in 313 women with pregnancy loss and in 87 spontaneously aborted embryos with 46,XX karyotype, as well as in control groups of 135 women without pregnancy loss and 64 embryos with 46,XX karyotype from induced abortions in women who terminated a normal pregnancy. The frequency of sXCI differed significantly between women with miscarriages and women without pregnancy losses (6.3% and 2.2%, respectively; p = 0.019). To exclude primary causes of sXCI, sequencing of the XIST and XACT genes was performed. The XIST and XACT gene sequencing revealed no known pathogenic variants that could lead to sXCI. Molecular karyotyping was performed using aCGH, followed by verification of X-linked CNVs by RT-PCR and MLPA. Microdeletions at Xp11.23 and Xq24 as well as gains of Xq28 were detected in women with sXCI and pregnancy loss.
Collapse
Affiliation(s)
- Elizaveta A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Elena A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Tatyana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Maria E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Aleksei А Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Tatyana N Aleksandrova
- Department of Obstetrics and Gynecology, Siberian State Medical University, Tomsk, Russian Federation
| | - Sergey Yu Yuriev
- Department of Obstetrics and Gynecology, Siberian State Medical University, Tomsk, Russian Federation
| | - Nikolay A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| |
Collapse
|
7
|
Nagy O, Kárteszi J, Elmont B, Ujfalusi A. Case Report: Expressive Speech Disorder in a Family as a Hallmark of 7q31 Deletion Involving the FOXP2 Gene. Front Pediatr 2021; 9:664548. [PMID: 34490154 PMCID: PMC8417935 DOI: 10.3389/fped.2021.664548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants of FOXP2 gene were identified first as a monogenic cause of childhood apraxia of speech (CAS), a complex disease that is associated with an impairment of the precision and consistency of movements underlying speech, due to deficits in speech motor planning and programming. FOXP2 variants are heterogenous; single nucleotide variants and small insertions/deletions, intragenic and large-scale deletions, as well as disruptions by structural chromosomal aberrations and uniparental disomy of chromosome 7 are the most common types of mutations. FOXP2-related speech and language disorders can be classified as "FOXP2-only," wherein intragenic mutations result in haploinsufficiency of the FOXP2 gene, or "FOXP2-plus" generated by structural genomic variants (i.e., translocation, microdeletion, etc.) and having more likely developmental and behavioral disturbances adjacent to speech and language impairment. The additional phenotypes are usually related to the disruption/deletion of multiple genes neighboring FOXP2 in the affected chromosomal region. We report the clinical and genetic findings in a family with four affected individuals having expressive speech impairment as the dominant symptom and additional mild dysmorphic features in three. A 7.87 Mb interstitial deletion of the 7q31.1q31.31 region was revealed by whole genome diagnostic microarray analysis in the proband. The FOXP2 gene deletion was confirmed by multiplex ligation-dependent probe amplification (MLPA), and all family members were screened by this targeted method. The FOXP2 deletion was detected in the mother and two siblings of the proband using MLPA. Higher resolution microarray was performed in all the affected individuals to refine the extent and breakpoints of the 7q31 deletion and to exclude other pathogenic copy number variants. To the best of our knowledge, there are only two family-studies reported to date with interstitial 7q31 deletion and showing the core phenotype of FOXP2 haploinsufficiency. Our study may contribute to a better understanding of the behavioral phenotype of FOXP2 disruptions and aid in the identification of such patients. We illustrate the importance of a targeted MLPA analysis suitable for the detection of FOXP2 deletion in selected cases with a specific phenotype of expressive speech disorder. The "phenotype first" and targeted diagnostic strategy can improve the diagnostic yield of speech disorders in the routine clinical practice.
Collapse
Affiliation(s)
- Orsolya Nagy
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Beatrix Elmont
- Department of Pediatrics, Hospital of Zala County, Zalaegerszeg, Hungary
| | - Anikó Ujfalusi
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|