1
|
Misiura M, Munkombwe C, Igwe K, Verble DD, Likos KDS, Minto L, Bartlett A, Zetterberg H, Turner JA, Dotson VM, Brickman AM, Hu WT, Wharton W. Neuroimaging correlates of Alzheimer's disease biomarker concentrations in a racially diverse high-risk cohort of middle-aged adults. Alzheimers Dement 2024; 20:5961-5972. [PMID: 39136298 PMCID: PMC11497767 DOI: 10.1002/alz.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION In this study, we investigated biomarkers in a midlife, racially diverse, at-risk cohort to facilitate early identification and intervention. We examined neuroimaging measures, including resting state functional magnetic resonance imaging (fMRI), white matter hyperintensity vo (WMH), and hippocampal volumes, alongside cerebrospinal fluid (CSF) markers. METHODS Our data set included 76 cognitively unimpaired, middle-aged, Black Americans (N = 29, F/M = 17/12) and Non-Hispanic White (N = 47, F/M = 27/20) individuals. We compared cerebrospinal fluid phosphorylated tau141 and amyloid beta (Aβ)42 to fMRI default mode network (DMN) subnetwork connectivity, WMH volumes, and hippocampal volumes. RESULTS Results revealed a significant race × Aβ42 interaction in Black Americans: lower Aβ42 was associated with reduced DMN connectivity and increased WMH volumes regions but not in non-Hispanic White individuals. DISCUSSION Our findings suggest that precuneus DMN connectivity and temporal WMHs may be linked to Alzheimer's disease risk pathology during middle age, particularly in Black Americans. HIGHLIGHTS Cerebrospinal fluid (CSF) amyloid beta (Aβ)42 relates to precuneus functional connectivity in Black, but not White, Americans. Higher white matter hyperintensity volume relates to lower CSF Aβ42 in Black Americans. Precuneus may be a hub for early Alzheimer's disease pathology changes detected by functional connectivity.
Collapse
Affiliation(s)
- Maria Misiura
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Kay Igwe
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Danielle D. Verble
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGeorgiaUSA
| | - Kelly D. S. Likos
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGeorgiaUSA
| | - Lex Minto
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Henrik Zetterberg
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and GothenburgUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Institute of NeurologyUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCL, Maple HouseLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jessica A. Turner
- Department of Psychiatry and Mental Health, College of MedicineOhio State UniversityColumbusOhioUSA
| | - Vonetta M. Dotson
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
- Gerontology DepartmentGeorgia State UniversityAtlantaGeorgiaUSA
| | - Adam M. Brickman
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - William T. Hu
- Institute for Health, Health Care Policy, and Aging ResearchRutgers UniversityNew BrunswickNew JerseyUSA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Kang DW, Wang SM, Um YH, Kim S, Kim T, Kim D, Lee CU, Lim HK. Transcranial direct current stimulation and neuronal functional connectivity in MCI: role of individual factors associated to AD. Front Psychiatry 2024; 15:1428535. [PMID: 39224475 PMCID: PMC11366601 DOI: 10.3389/fpsyt.2024.1428535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Background Alzheimer's disease (AD) encompasses a spectrum that may progress from mild cognitive impairment (MCI) to full dementia, characterized by amyloid-beta and tau accumulation. Transcranial direct current stimulation (tDCS) is being investigated as a therapeutic option, but its efficacy in relation to individual genetic and biological risk factors remains underexplored. Objective To evaluate the effects of a two-week anodal tDCS regimen on the left dorsolateral prefrontal cortex, focusing on functional connectivity changes in neural networks in MCI patients resulting from various possible underlying disorders, considering individual factors associated to AD such as amyloid-beta deposition, APOE ϵ4 allele, BDNF Val66Met polymorphism, and sex. Methods In a single-arm prospective study, 63 patients with MCI, including both amyloid-PET positive and negative cases, received 10 sessions of tDCS. We assessed intra- and inter-network functional connectivity (FC) using fMRI and analyzed interactions between tDCS effects and individual factors associated to AD. Results tDCS significantly enhanced intra-network FC within the Salience Network (SN) and inter-network FC between the Central Executive Network and SN, predominantly in APOE ϵ4 carriers. We also observed significant sex*tDCS interactions that benefited inter-network FC among females. Furthermore, the effects of multiple modifiers, particularly the interaction of the BDNF Val66Met polymorphism and sex, were evident, as demonstrated by increased intra-network FC of the SN in female Met non-carriers. Lastly, the effects of tDCS on FC did not differ between the group of 26 MCI patients with cerebral amyloid-beta deposition detected by flutemetamol PET and the group of 37 MCI patients without cerebral amyloid-beta deposition. Conclusions The study highlights the importance of precision medicine in tDCS applications for MCI, suggesting that individual genetic and biological profiles significantly influence therapeutic outcomes. Tailoring interventions based on these profiles may optimize treatment efficacy in early stages of AD.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - TaeYeong Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| |
Collapse
|
3
|
van der Heide FCT, Steens ILM, Limmen B, Mokhtar S, van Boxtel MPJ, Schram MT, Köhler S, Kroon AA, van der Kallen CJH, Dagnelie PC, van Dongen MCJM, Eussen SJPM, Berendschot TTJM, Webers CAB, van Greevenbroek MMJ, Koster A, van Sloten TT, Jansen JFA, Backes WH, Stehouwer CDA. Thinner inner retinal layers are associated with lower cognitive performance, lower brain volume, and altered white matter network structure-The Maastricht Study. Alzheimers Dement 2024; 20:316-329. [PMID: 37611119 PMCID: PMC10917009 DOI: 10.1002/alz.13442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION The retina may provide non-invasive, scalable biomarkers for monitoring cerebral neurodegeneration. METHODS We used cross-sectional data from The Maastricht study (n = 3436; mean age 59.3 years; 48% men; and 21% with type 2 diabetes [the latter oversampled by design]). We evaluated associations of retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses with cognitive performance and magnetic resonance imaging indices (global grey and white matter volume, hippocampal volume, whole brain node degree, global efficiency, clustering coefficient, and local efficiency). RESULTS After adjustment, lower thicknesses of most inner retinal layers were significantly associated with worse cognitive performance, lower grey and white matter volume, lower hippocampal volume, and worse brain white matter network structure assessed from lower whole brain node degree, lower global efficiency, higher clustering coefficient, and higher local efficiency. DISCUSSION The retina may provide biomarkers that are informative of cerebral neurodegenerative changes in the pathobiology of dementia.
Collapse
Grants
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- Stichting De Weijerhorst (Maastricht, the Netherlands), the Pearl String Initiative Diabetes (Amsterdam, the Netherlands), the Cardiovascular Center (CVC, Maastricht, the Netherlands), CARIM School for Cardiovascular Diseases (Maastricht, the Netherlands), CAPHRI School for Public Health and Primary Care (Maastricht, the Netherlands), NUTRIM School for Nutrition and Translational Research in Metabolism (Maastricht, the Netherlands), Stichting Annadal (Maastricht, the Netherlands), Health Foundation Limburg (Maastricht, the Netherlands), Perimed (Järfälla, Sweden), and by unrestricted grants from Janssen-Cilag B.V. (Tilburg, the Netherlands), Novo Nordisk Farma B.V. (Alphen aan den Rijn, the Netherlands), and Sanofi-Aventis Netherlands B.V. (Gouda, the Netherlands)
- 916.19.074 VENI research
- 2018T025 Netherlands Organization for Scientific Research and the Netherlands Organization for Health Research and Development, and a Dutch Heart Foundation research
- 2021.81.004 Diabetes Fonds Fellowship
Collapse
|
4
|
Wang CSM, Chen PS, Tsai TY, Hou NT, Tang CH, Chen PL, Huang YC, Cheng KS. Cognitive Effect of Transcranial Direct Current Stimulation on Left Dorsolateral Prefrontal Cortex in Mild Alzheimer's Disease: A Randomized, Double-Blind, Cross-Over Small-Scale Exploratory Study. J Alzheimers Dis 2024; 98:563-577. [PMID: 38427493 DOI: 10.3233/jad-240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Transcranial direct current stimulation (tDCS) is considered a potential therapeutic instrument for Alzheimer's disease (AD) because it affects long-term synaptic plasticity through the processes of long-term potentiation and long-term depression, thereby improving cognitive ability. Nevertheless, the efficacy of tDCS in treating AD is still debated. Dorsal lateral prefrontal cortex is the main role in executive functions. Objective We investigate the cognitive effects of tDCS on AD patients. Methods Thirty mild AD patients aged 66-86 years (mean = 75.6) were included in a double-blind, randomized, sham-controlled crossover study. They were randomly assigned to receive 10 consecutive daily sessions of active tDCS (2 mA for 30 min) or a sham intervention and switched conditions 3 months later. The anodal and cathodal electrodes were placed on the left dorsal lateral prefrontal cortex and the right supraorbital area, respectively. Subjects underwent various neuropsychological assessments before and after the interventions. Results The results showed that tDCS significantly improved Cognitive Abilities Screening Instrument scores, especially on the items of "concentration and calculation", "orientation", "language ability", and "categorical verbal fluency". Mini-Mental State Examination and Wisconsin Card Sorting Test scores in all domains of "concept formation", "abstract thinking", "cognitive flexibility", and "accuracy" also improved significantly after tDCS. For the sham condition, no difference was found between the baseline scores and the after-intervention scores on any of the neuropsychological tests. Conclusion >: Using tDCS improves the cognition of AD patients. Further large size clinical trials are necessary to validate the data.
Collapse
Affiliation(s)
- Carol Sheei-Meei Wang
- Department of BioMedical Engineering, National Cheng Kung University, Tainan City, Taiwan
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
- Department of Psychiatry, College of Medicines, National Cheng Kung University Hospital, National Cheng Kung University, Tainan City, Taiwan
| | - Po See Chen
- Department of Psychiatry, College of Medicines, National Cheng Kung University Hospital, National Cheng Kung University, Tainan City, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Tsung-Yu Tsai
- Department of Psychiatry, College of Medicines, National Cheng Kung University Hospital, National Cheng Kung University, Tainan City, Taiwan
| | - Nien-Tsen Hou
- Department of Neurology, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chia-Hung Tang
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Pai-Lien Chen
- Biostatistics Department, Family Health International (FHI) 360, Durham, NC, USA
| | - Ying-Che Huang
- Department of Neurology, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Kuo-Sheng Cheng
- Department of BioMedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
5
|
Zorkina YA, Morozova IO, Abramova OV, Ochneva AG, Gankina OA, Andryushenko AV, Kurmyshev MV, Kostyuk GP, Morozova AY. [Use of modern classification systems for complex diagnostics of Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:121-127. [PMID: 38261294 DOI: 10.17116/jnevro2024124011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE To compare the content of β-amyloid (Aβ) peptides Aβ40, Aβ42, total and threonine phosphorylated 181 tau-protein in cerebrospinal fluid (CSF) of patients with the clinical diagnosis of Alzheimer's disease (AD). MATERIAL AND METHODS The study was performed on 64 patients with a diagnosis of dementia and MMSE scores of 24 or lower. All patients underwent lumbar puncture. Aβ40, Aβ42, Aβ42/40 ratio, total tau, phosphorylated tau at threonine 181 were determined in the CSF using a multiplex assay according to the manufacturer's protocol, the concentration was determined in pkg/ml. RESULTS The preliminary diagnosis of AD was made in 3 patients (5%). As a result of the study of protein content in the CSF, signs of AD were detected in 48 (75%) people. The findings suggest that the diagnosis of AD is made 10-14 times less frequently than it should be according to the World Health Organization data. The discrepancy between clinical diagnosis and laboratory findings is confirmed by our study. CONCLUSION Differences in the therapy of dementias and the development of new drugs targeting specific links in the pathogenesis of different types of dementias require accurate and complete diagnosis of dementias, especially AD, as the most common type of dementia.
Collapse
Affiliation(s)
- Y A Zorkina
- Serbsky National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| | - I O Morozova
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| | - O V Abramova
- Serbsky National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| | - A G Ochneva
- Serbsky National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| | - O A Gankina
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A V Andryushenko
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - M V Kurmyshev
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| | - G P Kostyuk
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| | - A Yu Morozova
- Serbsky National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
- Alexeev Mental-Health Clinic No. 1 of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
6
|
Torrealba E, Aguilar-Zerpa N, Garcia-Morales P, Díaz M. Compensatory Mechanisms in Early Alzheimer's Disease and Clinical Setting: The Need for Novel Neuropsychological Strategies. J Alzheimers Dis Rep 2023; 7:513-525. [PMID: 37313485 PMCID: PMC10259077 DOI: 10.3233/adr-220116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/19/2023] [Indexed: 06/15/2023] Open
Abstract
Despite advances in the detection of biomarkers and in the design of drugs that can slow the progression of Alzheimer's disease (AD), the underlying primary mechanisms have not been elucidated. The diagnosis of AD has notably improved with the development of neuroimaging techniques and cerebrospinal fluid biomarkers which have provided new information not available in the past. Although the diagnosis has advanced, there is a consensus among experts that, when making the diagnosis in a specific patient, many years have probably passed since the onset of the underlying processes, and it is very likely that the biomarkers in use and their cutoffs do not reflect the true critical points for establishing the precise stage of the ongoing disease. In this context, frequent disparities between current biomarkers and cognitive and functional performance in clinical practice constitute a major drawback in translational neurology. To our knowledge, the In-Out-test is the only neuropsychological test developed with the idea that compensatory brain mechanisms exist in the early stages of AD, and whose positive effects on conventional tests performance can be reduced in assessing episodic memory in the context of a dual-task, through which the executive auxiliary networks are 'distracted', thus uncover the real memory deficit. Furthermore, as additional traits, age and formal education have no impact on the performance of the In-Out-test.
Collapse
Affiliation(s)
- Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Spain
- Faculty of Medicine, Universidad de Las Palmas De Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Norka Aguilar-Zerpa
- Universidad Nacional de Educación a Distancia (UNED), Las Palmas de Gran Canaria, Spain
| | - Pilar Garcia-Morales
- Department of Psychiatry, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Mario Díaz
- Department of Physics, University of La Laguna, Membrane Physiology and Biophysics, Tenerife, Spain
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
7
|
Perus L, Mangin JF, Deverdun J, Gutierrez LA, Gourieux E, Fischer C, Van Dokkum LEH, Manesco C, Busto G, Guyonnet S, Vellas B, Gabelle A, Le Bars E. Impact of multidomain preventive strategies on functional brain connectivity in older adults with cognitive complaint: Subset from the Montpellier center of the ancillary MAPT-MRI study. Front Aging Neurosci 2023; 14:971220. [PMID: 36705622 PMCID: PMC9871772 DOI: 10.3389/fnagi.2022.971220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The impact of multi-domain preventive interventions on older adults, in particular on those with higher risk to develop Alzheimer's disease (AD), could be beneficial, as it may delay cognitive decline. However, the precise mechanism of such positive impact is not fully understood and may involve brain reserve and adaptability of brain functional connectivity (FC). Methods To determine the effect of multidomain interventions (involving physical activity, cognitive training, nutritional counseling alone or in combination with omega-3 fatty acid supplementation and vs. a placebo) on the brain, longitudinal FC changes were assessed after 36 months of intervention on 100 older adults (above 70 year-old) with subjective cognitive complaints. Results No global change in FC was detected after uni or multidomain preventive interventions. However, an effect of omega-3 fatty acid supplementation dependent on cognitive decline status was underlined for frontoparietal, salience, visual and sensorimotor networks FC. These findings were independent of the cortical thickness and vascular burden. Discussion These results emphasize the importance of patient stratification, based on risk factors, for preventive interventions.
Collapse
Affiliation(s)
- Lisa Perus
- Memory Resources and Research Center, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France,INM, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France,Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Gui de Chauliac Hospital and University of Montpellier, Montpellier, France,CATI, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Ile de France, France
| | - Jean-François Mangin
- CATI, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Ile de France, France,Université Paris-Saclay, CEA, CNRS, Neurospin, UMR9027 Baobab, Gif-sur-Yvette, France
| | - Jérémy Deverdun
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Gui de Chauliac Hospital and University of Montpellier, Montpellier, France
| | | | | | - Clara Fischer
- CATI, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Ile de France, France
| | - Liesjet E. H. Van Dokkum
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Gui de Chauliac Hospital and University of Montpellier, Montpellier, France
| | - Clara Manesco
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Germain Busto
- Memory Resources and Research Center, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France,INM, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Sophie Guyonnet
- Inserm UMR 1295, University of Toulouse III, Toulouse, France,Gérontopôle, Department of Geriatrics, CHU Toulouse, Toulouse, France
| | - Bruno Vellas
- Inserm UMR 1295, University of Toulouse III, Toulouse, France,Gérontopôle, Department of Geriatrics, CHU Toulouse, Toulouse, France
| | - Audrey Gabelle
- Memory Resources and Research Center, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France,INM, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emmanuelle Le Bars
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Gui de Chauliac Hospital and University of Montpellier, Montpellier, France,*Correspondence: Emmanuelle Le Bars ✉
| | | |
Collapse
|
8
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Moffat G, Zhukovsky P, Coughlan G, Voineskos AN. Unravelling the relationship between amyloid accumulation and brain network function in normal aging and very mild cognitive decline: a longitudinal analysis. Brain Commun 2022; 4:fcac282. [PMID: 36415665 PMCID: PMC9678202 DOI: 10.1093/braincomms/fcac282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 06/27/2024] Open
Abstract
Pathological changes in the brain begin accumulating decades before the appearance of cognitive symptoms in Alzheimer's disease. The deposition of amyloid beta proteins and other neurotoxic changes occur, leading to disruption in functional connections between brain networks. Discrete characterization of the changes that take place in preclinical Alzheimer's disease has the potential to help treatment development by targeting the neuropathological mechanisms to prevent cognitive decline and dementia from occurring entirely. Previous research has focused on the cross-sectional differences in the brains of patients with mild cognitive impairment or Alzheimer's disease and healthy controls or has concentrated on the stages immediately preceding cognitive symptoms. The present study emphasizes the early preclinical phases of neurodegeneration. We use a longitudinal approach to examine the brain changes that take place during the early stages of cognitive decline in the Open Access Series of Imaging Studies-3 data set. Among 1098 participants, 274 passed the inclusion criteria (i.e. had at least two cognitive assessments and two amyloid scans). Over 90% of participants were healthy at baseline. Over 8-10 years, some participants progressed to very mild cognitive impairment (n = 48), while others stayed healthy (n = 226). Participants with cognitive decline show faster amyloid accumulation in the lateral temporal, motor and parts of the lateral prefrontal cortex. These changes in amyloid levels were linked to longitudinal increases in the functional connectivity of select networks, including default mode, frontoparietal and motor components. Our findings advance the understanding of amyloid staging and the corresponding changes in functional organization of large-scale brain networks during the progression of early preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Gemma Moffat
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Peter Zhukovsky
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Gillian Coughlan
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, M6A 2E1, Canada
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
10
|
Krauze M, Ognik K, Mikulski D, Jankowski J. Assessment of Neurodegenerative Changes in Turkeys Fed Diets with Different Proportions of Arginine and Methionine Relative to Lysine. Animals (Basel) 2022; 12:ani12121535. [PMID: 35739872 PMCID: PMC9219421 DOI: 10.3390/ani12121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary It is important to take care of a properly balanced amino acid composition in the diet in order to inhibit or delay the occurrence of processes and changes related to the destruction of nervous tissue. Therefore, an attempt was made in this manuscript to evaluate the effect of different ratios of the key amino acids arginine and methionine, relative to lysine, in relation to two turkey feeding standards. The amino acid guidelines formulated by British United Turkeys (BUT) suggest higher levels of lysine (Lys) in turkey diets than those recommended by the National Research Council (NRC). In order to assess the impact of such supplementation, we analyzed the level of indicators informing the presence or degree of advancement of neurodegenerative processes in the nervous tissue (the level of acetylcholinesterase and amyloid-β; the concentration of AChE complexes with amyloid-β and Tau protein, called glycosylated acetylcholinesterase (GAChE), indicative of the destruction of neurons). The level of low-density lipoprotein receptor-related protein 1, or LRP-1, which facilitates the breakdown of toxic amyloid-β, was also assessed. In addition, the effect of different doses of these amino acids on neurodegenerative changes in DNA, especially the degree of methylation of histone proteins resulting from covalent modifications was compared between lysine and arginine residues. Abstract We postulated that the use of optimal levels and proportions of Arg and Met relative to a low or high concentration of Lys in diets for meat turkeys would reduce the occurrence of metabolic disturbances in the nervous tissue that can lead to neurodegenerative changes. The aim of the study was to determine the effect of various proportions of Lys, Arg, and Met in diets for turkeys, with a low content of Lys in accordance with NRC (Experiment 1) recommendations, and in diets with high Lys levels that are close to the recommendations of breeding companies (Experiment 2) on selected indicators of potential neurodegenerative effects in the brain and liver of turkeys. The Experiment 1 and Experiment 2 was conducted using 864 day-old turkey chicks randomly assigned to six groups, in eight replicates (6 groups × 18 birds × 8 replicates). A full description of the methodology can be found in previously published papers using the same experimental design. Indicators informing about the presence or advancement of neurodegenerative processes in the nervous tissue were determined in the brain and liver (level of: AChE, amyloid-β, GAChE, Tau protein, LRP1, and the degree of DNA methylation). It was established that in the case of both a low (National Research Council, NRC) and a high (British United Turkeys, BUT) level of Lys in the diet of turkeys, the Arg level can be reduced to 90% of the Lys level and Met to 30% of the Lys level, because this does not cause neurodegenerative changes in turkeys. Unfavorable neurodegenerative changes may appear if the Arg level is increased from 100 to 110% of the Lys level recommended by the NRC. However, due to the lack of such a relationship when Arg is increased from 100 to 110% of the Lys level recommended by BUT, at this stage of research no definitive conclusions can be drawn regarding the risk of neurodegenerative changes caused by increasing Arg in the diet of turkeys.
Collapse
Affiliation(s)
- Magdalena Krauze
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland;
- Correspondence:
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland;
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.M.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.M.); (J.J.)
| |
Collapse
|
11
|
Kang DW, Wang SM, Um YH, Kim NY, Lee CU, Lim HK. Impact of APOE ε4 Carrier Status on Associations Between Subthreshold, Positive Amyloid-β Deposition, Brain Function, and Cognitive Performance in Cognitively Normal Older Adults: A Prospective Study. Front Aging Neurosci 2022; 14:871323. [PMID: 35677201 PMCID: PMC9168227 DOI: 10.3389/fnagi.2022.871323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundA growing body of evidence suggests a deteriorating effect of subthreshold amyloid-beta (Aβ) accumulation on cognition before the onset of clinical symptoms of Alzheimer's disease (AD). Despite the association between the Aβ-dependent pathway and the APOE ε4 allele, the impact of this allele on the progression from the subthreshold Aβ deposits to cognitive function impairment is unclear. Furthermore, the comparative analysis of positive Aβ accumulation in the preclinical phase is lacking.ObjectiveThis study aimed to explore the differential effect of the APOE ε4 carrier status on the association between Aβ deposition, resting-state brain function, and cognitive performance in cognitively normal (CN) older adults, depending on the Aβ burden status.MethodsOne hundred and eighty-two older CN adults underwent resting-state functional magnetic resonance imaging, [18F] flutemetamol (FMM) positron emission tomography, a neuropsychological battery, and APOE genotyping. We evaluated the resting-state brain function by measuring the local and remote functional connectivity (FC) and measured the remote FC in the default-mode network (DMN), central-executive network (CEN), and salience network (SN). In addition, the subjects were dichotomized into those with subthreshold and positive Aβ deposits using a neocortical standardized uptake value ratio with the cut-off value of 0.62, which was calculated with respect to the pons.ResultsThe present result showed that APOE ε4 carrier status moderated the relationship between Aβ deposition, local and remote resting-state brain function, and cognitive performance in each CN subthreshold and positive Aβ group. We observed the following: (i) the APOE ε4 carrier status-Aβ deposition and APOE ε4 carrier status-local FC interaction for the executive and memory function; (ii) the APOE ε4 carrier status-regional Aβ accumulation interaction for the local FC; and (iv) the APOE ε4 carrier status-local FC interaction for the remote inter-network FC between the DMN and CEN, contributing higher cognitive performance in the APOE ε4 carrier with higher inter-network FC. Finally, these results were modulated according to Aβ positivity.ConclusionThis study is the first attempt to thoroughly examine the influence of the APOE ε4 carrier status from the subthreshold to positive Aβ accumulation during the preclinical phase.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nak-Young Kim
- Department of Psychiatry, Keyo Hospital, Uiwang, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Hyun Kook Lim
| |
Collapse
|
12
|
Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y, Jiang J. Exploring dynamic functional connectivity alterations in the preclinical stage of Alzheimer's disease: an exploratory study from SILCODE. J Neural Eng 2022; 19. [PMID: 35147522 DOI: 10.1088/1741-2552/ac542d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer's disease (AD). METHODS 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by independent component analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance (ANOVA) was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. RESULTS The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). CONCLUSION Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai University, Shangda Road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| | - Xueyan Jiang
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Feng Yue
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Luyao Wang
- Shanghai University, Shangda road, Baoshan district, shanghai, Shanghai, 200444, CHINA
| | - Henning Boecker
- University Hospital Bonn, Positron Emission Tomography (PET) Group, Bonn, Germany, Bonn, Nordrhein-Westfalen, 53127, GERMANY
| | - Ying Han
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Jiehui Jiang
- Shanghai University, Shangda road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| |
Collapse
|