1
|
Martins DJ, Di Lazzaro Filho R, Bertola DR, Hoch NC. Rothmund-Thomson syndrome, a disorder far from solved. FRONTIERS IN AGING 2023; 4:1296409. [PMID: 38021400 PMCID: PMC10676203 DOI: 10.3389/fragi.2023.1296409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by a range of clinical symptoms, including poikiloderma, juvenile cataracts, short stature, sparse hair, eyebrows/eyelashes, nail dysplasia, and skeletal abnormalities. While classically associated with mutations in the RECQL4 gene, which encodes a DNA helicase involved in DNA replication and repair, three additional genes have been recently identified in RTS: ANAPC1, encoding a subunit of the APC/C complex; DNA2, which encodes a nuclease/helicase involved in DNA repair; and CRIPT, encoding a poorly characterized protein implicated in excitatory synapse formation and splicing. Here, we review the clinical spectrum of RTS patients, analyze the genetic basis of the disease, and discuss molecular functions of the affected genes, drawing some novel genotype-phenotype correlations and proposing avenues for future studies into this enigmatic disorder.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Di Lazzaro Filho
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Dasa Genômica/Genera, Genômica, São Paulo, Brazil
| | - Debora Romeo Bertola
- Center for Human Genome Studies, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Children’s Institute, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Nícolas Carlos Hoch
- Genomic Stability Unit, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Wojtara MS, Kang J, Zaman M. Congenital Telangiectatic Erythema: Scoping Review. JMIR DERMATOLOGY 2023; 6:e48413. [PMID: 37796556 PMCID: PMC10587801 DOI: 10.2196/48413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Congenital telangiectatic erythema (CTE), also known as Bloom syndrome, is a rare autosomal recessive disorder characterized by below-average height, a narrow face, a red skin rash occurring on sun-exposed areas of the body, and an increased risk of cancer. CTE is one of many genodermatoses and photodermatoses associated with defects in DNA repair. CTE is caused by a mutation occurring in the BLM gene, which causes abnormal breaks in chromosomes. OBJECTIVE We aimed to analyze the existing literature on CTE to provide additional insight into its heredity, the spectrum of clinical presentations, and the management of this disorder. In addition, the gaps in current research and the use of artificial intelligence to streamline clinical diagnosis and the management of CTE are outlined. METHODS A literature search was conducted on PubMed, DOAJ, and Scopus using search terms such as "congenital telangiectatic erythema," "bloom syndrome," and "bloom-torre-machacek." Due to limited current literature, studies published from January 2000 to January 2023 were considered for this review. A total of 49 sources from the literature were analyzed. RESULTS Through this scoping review, the researchers were able to identify several publications focusing on Bloom syndrome. Some common subject areas included the heredity of CTE, clinical presentations of CTE, and management of CTE. In addition, the literature on rare diseases shows the potential advancements in understanding and treatment with artificial intelligence. Future studies should address the causes of heterogeneity in presentation and examine potential therapeutic candidates for CTE and similarly presenting syndromes. CONCLUSIONS This review illuminated current advances in potential molecular targets or causative pathways in the development of CTE as well as clinical features including erythema, increased cancer risk, and growth abnormalities. Future studies should continue to explore innovations in this space, especially in regard to the use of artificial intelligence, including machine learning and deep learning, for the diagnosis and clinical management of rare diseases such as CTE.
Collapse
Affiliation(s)
- Magda Sara Wojtara
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jayne Kang
- Department of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Mohammed Zaman
- Department of Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
3
|
Identifying the Carcinogenic Mechanism of Malignant Struma Ovarii Using Whole-Exome Sequencing and DNA Methylation Analysis. Curr Issues Mol Biol 2023; 45:1843-1851. [PMID: 36975488 PMCID: PMC10047136 DOI: 10.3390/cimb45030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Since malignant struma ovarii is a very rare disease, its carcinogenic mechanism has not been elucidated. Here, we sought to identify the genetic lesions that may have led to the carcinogenesis of a rare case of malignant struma ovarii (follicular carcinoma) with peritoneal dissemination. Methods: DNA was extracted from the paraffin-embedded sections of normal uterine tissues and malignant struma ovarii for genetic analysis. Whole-exome sequencing and DNA methylation analysis were then performed. Results: Germline variants of RECQL4, CNTNAP2, and PRDM2, which are tumor-suppressor genes, were detected by whole-exome sequencing. Somatic uniparental disomy (UPD) was also observed in these three genes. Additionally, the methylation of FRMD6-AS2, SESN3, CYTL1, MIR4429, HIF3A, and ATP1B2, which are associated with tumor growth suppression, was detected by DNA methylation analysis. Conclusions: Somatic UPD and DNA methylation in tumor suppressor genes may be associated with the pathogenesis of malignant struma ovarii. To our knowledge, this is the first report of whole-exome sequencing and DNA methylation analysis in malignant struma ovarii. Genetic and DNA methylation analysis may help elucidate the mechanism of carcinogenesis in rare diseases and guide treatment decisions.
Collapse
|
4
|
Labani M, Beheshti A, Argha A, Alinejad-Rokny H. A Comprehensive Investigation of Genomic Variants in Prostate Cancer Reveals 30 Putative Regulatory Variants. Int J Mol Sci 2023; 24:2472. [PMID: 36768794 PMCID: PMC9916892 DOI: 10.3390/ijms24032472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed non-skin cancer in the world. Previous studies have shown that genomic alterations represent the most common mechanism for molecular alterations responsible for the development and progression of PC. This highlights the importance of identifying functional genomic variants for early detection in high-risk PC individuals. Great efforts have been made to identify common protein-coding genetic variations; however, the impact of non-coding variations, including regulatory genetic variants, is not well understood. Identification of these variants and the underlying target genes will be a key step in improving the detection and treatment of PC. To gain an understanding of the functional impact of genetic variants, and in particular, regulatory variants in PC, we developed an integrative pipeline (AGV) that uses whole genome/exome sequences, GWAS SNPs, chromosome conformation capture data, and ChIP-Seq signals to investigate the potential impact of genomic variants on the underlying target genes in PC. We identified 646 putative regulatory variants, of which 30 significantly altered the expression of at least one protein-coding gene. Our analysis of chromatin interactions data (Hi-C) revealed that the 30 putative regulatory variants could affect 131 coding and non-coding genes. Interestingly, our study identified the 131 protein-coding genes that are involved in disease-related pathways, including Reactome and MSigDB, for most of which targeted treatment options are currently available. Notably, our analysis revealed several non-coding RNAs, including RP11-136K7.2 and RAMP2-AS1, as potential enhancer elements of the protein-coding genes CDH12 and EZH1, respectively. Our results provide a comprehensive map of genomic variants in PC and reveal their potential contribution to prostate cancer progression and development.
Collapse
Affiliation(s)
- Mahdieh Labani
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Data Analytic Lab, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
| | - Amin Beheshti
- Data Analytic Lab, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
| | - Ahmadreza Argha
- The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, The University of New South Wales, Sydney, NSW 2052, Australia
- Health Data Analytics Program, Centre for Applied AI, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
5
|
Paccosi E, Balajee AS, Proietti-De-Santis L. A matter of delicate balance: Loss and gain of Cockayne syndrome proteins in premature aging and cancer. FRONTIERS IN AGING 2022; 3:960662. [PMID: 35935726 PMCID: PMC9351357 DOI: 10.3389/fragi.2022.960662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022]
Abstract
DNA repair genes are critical for preserving genomic stability and it is well established that mutations in DNA repair genes give rise to progeroid diseases due to perturbations in different DNA metabolic activities. Cockayne Syndrome (CS) is an autosomal recessive inheritance caused by inactivating mutations in CSA and CSB genes. This review will primarily focus on the two Cockayne Syndrome proteins, CSA and CSB, primarily known to be involved in Transcription Coupled Repair (TCR). Curiously, dysregulated expression of CS proteins has been shown to exhibit differential health outcomes: lack of CS proteins due to gene mutations invariably leads to complex premature aging phenotypes, while excess of CS proteins is associated with carcinogenesis. Thus it appears that CS genes act as a double-edged sword whose loss or gain of expression leads to premature aging and cancer. Future mechanistic studies on cell and animal models of CS can lead to potential biological targets for interventions in both aging and cancer development processes. Some of these exciting possibilities will be discussed in this review in light of the current literature.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute of Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo, Italy
- *Correspondence: Elena Paccosi, ; Adayabalam S. Balajee, ; Luca Proietti-De-Santis,
| |
Collapse
|
6
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
7
|
Maity J, Horibata S, Zurcher G, Lee JM. Targeting of RecQ Helicases as a Novel Therapeutic Strategy for Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14051219. [PMID: 35267530 PMCID: PMC8909030 DOI: 10.3390/cancers14051219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
RecQ helicases are essential for DNA replication, recombination, DNA damage repair, and other nucleic acid metabolic pathways required for normal cell growth, survival, and genome stability. More recently, RecQ helicases have been shown to be important for replication fork stabilization, one of the major mechanisms of PARP inhibitor resistance. Cancer cells often have upregulated helicases and depend on these enzymes to repair rapid growth-promoted DNA lesions. Several studies are now evaluating the use of RecQ helicases as potential biomarkers of breast and gynecologic cancers. Furthermore, RecQ helicases have attracted interest as possible targets for cancer treatment. In this review, we discuss the characteristics of RecQ helicases and their interacting partners that may be utilized for effective treatment strategies (as cancers depend on helicases for survival). We also discuss how targeting helicase in combination with DNA repair inhibitors (i.e., PARP and ATR inhibitors) can be used as novel approaches for cancer treatment to increase sensitivity to current treatment to prevent rise of treatment resistance.
Collapse
Affiliation(s)
- Jyotirindra Maity
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.M.); (G.Z.)
| | - Sachi Horibata
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.H.); (J.M.L.)
| | - Grant Zurcher
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.M.); (G.Z.)
| | - Jung-Min Lee
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.M.); (G.Z.)
- Correspondence: (S.H.); (J.M.L.)
| |
Collapse
|
8
|
Luong TT, Bernstein KA. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes (Basel) 2021; 12:1919. [PMID: 34946868 PMCID: PMC8701316 DOI: 10.3390/genes12121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
RECQL4 is a member of the evolutionarily conserved RecQ family of 3' to 5' DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.
Collapse
Affiliation(s)
| | - Kara A. Bernstein
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA;
| |
Collapse
|