1
|
Wu D, Zhou B, Hong L, Cen H, Wang L, Ma Y, Gong H. Trophoblast cell-derived extracellular vesicles regulate the polarization of decidual macrophages by carrying miR-141-3p in the pathogenesis of preeclampsia. Sci Rep 2024; 14:24529. [PMID: 39424901 PMCID: PMC11489854 DOI: 10.1038/s41598-024-76563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Dysregulation of macrophage polarization can prevent the invasion of trophoblast cells and further limit spiral artery remodeling in preeclampsia (PE). However, its mechanism is obscure. HTR8-/Svneo cells were cultured under normoxic or hypoxic conditions and extracellular vesicles (EVs) in the culture supernatants were extracted. Next, the cells were incubated with those EVs to investigate their effects on trophoblasts. A co-culture system consisting of HTR8-/Svneo cells and macrophages was used to reveal how the trophoblast-derived EVs affected the macrophage subtype. Finally, a PE mouse model and miR-141-3p knockout mice were used to verify the function of miR-141-3p in PE. Hypoxia induced abnormal increases in the levels of miR-141-3p in HTR8-/Svneo cells and EVs. EVs from hypoxia-treated HTR8-/Svneo cells could downregulate PTEN, a potential target of miR-141-3p, and inhibit trophoblast mitophagy and invasion. However, HTR8-/Svneo cells transfected with an miR-141-3p inhibitor could attenuate the influence of EVs. In an HTR8-/Svneo cell plus macrophage co-culture system, hypoxia-pretreated cells promoted the transformation of macrophages into the M1-phenotye, and HTR8-/Svneo invasion was inhibited by the macrophages. MiR-141 from EVs could target and downregulate dual specificity phosphatase 1 (DUSP1) expression in macrophages, induce formation of the M1 macrophage phenotype in THP-1 cells, downregulate DUSP1 expression, and upregulate TAB2/TAK1 signaling. These results were also demonstrated in normal pregnant mice and PE pregnant mice. A hypoxic environment could upregulate miR-141 expression in the EVs of HTR8-/Svneo cells, and THP-1-derived macrophages could uptake EVs releasing miR-141 to downregulate DUSP1 expression and induce the formation of M1 macrophages, which can lead to the development of PE.
Collapse
Affiliation(s)
- Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Zhou
- Hainan Medical University, Haikou, China
| | - Lan Hong
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Cen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ling Wang
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research & Hainan Provincial Clinical Research Center for Thalassemia & Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Humin Gong
- Department of Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
| |
Collapse
|
2
|
Dadkhah Nikroo N, Jafarinejad H, Yousefi Z, Abdolvahabi Z, Malek M, Mortazavi P, Pazouki A, Mokhber S, Nourbakhsh M. Elevated mir-141 in obesity: Insights into the interplay with sirtuin 1 and non-alcoholic fatty liver disease. Obes Sci Pract 2024; 10:e70007. [PMID: 39345780 PMCID: PMC11427942 DOI: 10.1002/osp4.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/01/2024] Open
Abstract
Background Changes in gene expression related to obesity are linked to microRNAs, such as miR-141, which play a crucial role in metabolic homeostasis. Sirtuin 1 (SIRT1), an enzyme that plays a crucial role in regulating various cellular functions and metabolism, is implicated in obesity and the ensuing non-alcoholic fatty liver disease (NAFLD). The aim of this research was to evaluate the levels of miR-141 and its relationship with SIRT1 and NAFLD. Methods A group of 100 adults (50 with obesity and 50 with normal-weight) were selected and underwent complete clinical evaluation and anthropometric measurements. Biochemical parameters were assessed in blood serum, and the levels of miR-141 in plasma were measured by real-time PCR. The expression of the SIRT1 gene was also evaluated in the peripheral blood mononuclear cells using Real-time PCR. The ELISA technique was used to determine insulin levels. Liver steatosis was assessed by ultrasound. Results The results showed that levels of miR-141 were significantly increased in participants with obesity compared with the control group. Conversely, the expression of the SIRT1 gene in individuals with obesity was lower than that in control participants. A strong negative correlation was observed between miR-141 and SIRT1 and a strong positive association was observed between miR-141 and metabolic parameters. Furthermore, participants with fatty liver had significantly elevated levels of miR-141 gene expression and lower expression of SIRT1 gene, compared to those without fatty liver. Conclusion elevated levels of miR-141 in individuals with obesity might be a contributing factor in the repression of SIRT1 in obesity and its consequences, including NAFLD. Therefore, miR-141 might serve as a suitable diagnostic and therapeutic target in obesity and NAFLD.
Collapse
Affiliation(s)
- Nikta Dadkhah Nikroo
- Finetech in Medicine Research CenterIran University of Medical SciencesTehranIran
| | - Habib Jafarinejad
- Cancer Research Center and Department of ImmunologySchool of MedicineSemnan University of Medical SciencesSemnanIran
- Legal Medicine Research CenterLegal Medicine OrganizationTehranIran
| | - Zeynab Yousefi
- Department of Clinical BiochemistryFaculty of Medical ScienceTarbiat Modares UniversityTehranIran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research CentreResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular DiseaseInstitute of Endocrinology and MetabolismIran University of Medical SciencesTehranIran
| | - Pejman Mortazavi
- Department of PathobiologyFaculty of Veterinary MedicineScience and Research BranchIslamic Azad UniversityTehranIran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery Research CenterIran University of Medical SciencesTehranIran
| | - Somayeh Mokhber
- Minimally Invasive Surgery Research CenterIran University of Medical SciencesTehranIran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research CenterIran University of Medical SciencesTehranIran
- Department of BiochemistrySchool of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
4
|
Vyavahare S, Kumar S, Smith K, Mendhe B, Zhong R, Cooley MA, Baban B, Isales CM, Hamrick M, Hill WD, Fulzele S. Inhibiting MicroRNA-141-3p Improves Musculoskeletal Health in Aged Mice. Aging Dis 2023; 14:2303-2316. [PMID: 37199586 PMCID: PMC10676793 DOI: 10.14336/ad.2023.0310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence shows that the microRNA-141-3p is involved in various age-related pathologies. Previously, our group and others reported elevated levels of miR-141-3p in several tissues and organs with age. Here, we inhibited the expression of miR-141-3p using antagomir (Anti-miR-141-3p) in aged mice and explored its role in healthy aging. We analyzed serum (cytokine profiling), spleen (immune profiling), and overall musculoskeletal phenotype. We found decreased levels of pro-inflammatory cytokines (such as TNF-α, IL-1β, IFN-γ) in serum with Anti-miR-141-3p treatment. The flow-cytometry analysis on splenocytes revealed decreased M1 (pro-inflammatory) and increased M2 (anti-inflammatory) populations. We also found improved bone microstructure and muscle fiber size with Anti-miR-141-3p treatment. Molecular analysis revealed that miR-141-3p regulates the expression of AU-rich RNA-binding factor 1 (AUF1) and promotes senescence (p21, p16) and pro-inflammatory (TNF-α, IL-1β, IFN-γ) environment whereas inhibiting miR-141-3p prevents these effects. Furthermore, we demonstrated that the expression of FOXO-1 transcription factor was reduced with Anti-miR-141-3p and elevated with silencing of AUF1 (siRNA-AUF1), suggesting crosstalk between miR-141-3p and FOXO-1. Overall, our proof-of-concept study demonstrates that inhibiting miR-141-3p could be a potential strategy to improve immune, bone, and muscle health with age.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Sandeep Kumar
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Kathryn Smith
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Arkansas, USA.
| | - Bharati Mendhe
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
| | - Roger Zhong
- Department of Neuroscience and Regenerative Medicine, Augusta, GA, USA.
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA.
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA.
| | - Carlos M. Isales
- Department of Medicine, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
- Department of Neuroscience and Regenerative Medicine, Augusta, GA, USA.
| | - Mark Hamrick
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, SC 29403, USA.
| | - Sadanand Fulzele
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, USA.
- Department of Medicine, Augusta University, Augusta, GA, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, USA.
- Department of Neuroscience and Regenerative Medicine, Augusta, GA, USA.
| |
Collapse
|