1
|
Nagy A, Niu N, Ratner E, Hui P, Buza N. Novel FOXL2 Mutation in an Ovarian Adult Granulosa Cell Tumor: Report of a Case With Diagnostic and Clinicopathologic Implications. Int J Gynecol Pathol 2024; 43:631-636. [PMID: 38426544 DOI: 10.1097/pgp.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Adult granulosa cell tumor, the most common malignant ovarian sex cord-stromal tumor, harbors the characteristic mutation c.402C>G (p.C134W) in the FOXL2 gene in ~90% to 95% of cases. To date, no other variants of FOXL2 mutations have been identified in these tumors. Here we report the first case of an adult granulosa cell tumor with a novel FOXL2 point mutation c.398C>T (p.A133V) presenting in a 64-year-old postmenopausal woman. The patient underwent total hysterectomy and bilateral salpingo-oophorectomy for atypical endometrial hyperplasia and gross examination revealed an incidental 3.2 cm right ovarian mass with a solid, bright yellow, homogeneous cut surface. Microscopically, ~30% of the tumor showed a nested growth pattern composed of uniform tumor cells with oval nuclei and a moderate amount of pale cytoplasm, while the remaining areas consisted of a bland storiform fibromatous stroma. Reticulin stain demonstrated loss of the individual pericellular network within the nested areas, while the pericellular staining pattern was retained in the background stromal component. FOXL2 sequencing analysis was performed in both components and revealed a c.398C>T (p.A133V) mutation in the nested component, whereas wild-type FOXL2 sequence was identified in the fibromatous stroma. Sections from the uterus showed a low-grade endometrioid endometrial adenocarcinoma with superficial myometrial invasion. The patient underwent adjuvant vaginal cuff brachytherapy for the endometrial carcinoma and is alive and well at 8 months follow-up. This case illustrates that new FOXL2 mutations may be detected in ovarian sex cord-stromal tumors with increasing use of routine molecular testing, adding to the complexity of the pathologic diagnosis. In the right morphologic and clinical context, a FOXL2 mutation-even if it is different from the dominant hotspot mutation c.402C>G (p.C134W)-can support the diagnosis of adult granulosa cell tumor.
Collapse
|
2
|
Wu J, Yu H, Zhang Y, Zhao H, Zhong B, Yu C, Feng Z, Yu H, Li H. Pathological characteristics of SRY-negative 38,XX-DSD pigs: A family case report. Anim Reprod Sci 2024; 270:107579. [PMID: 39190944 DOI: 10.1016/j.anireprosci.2024.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Disorders of sex development (DSD) are congenital conditions characterized by atypical development of chromosomes, gonads, or anatomical sex. XX-DSD pigs disrupt the production of high-quality breeding pigs and impede the advancement of the pig industry. However, the etiology of XX-DSD pigs remains unclear. Systematic reports on the genetic and pathological characteristics of prepubescent XX-DSD pigs in familial contexts are sparse. This study aimed to investigate the genetic and pathological features of one-month-old XX-DSD pigs within a familial context and to provide phenotypic information to elucidate the pathogenic mechanisms of XX-DSD pigs. The findings revealed that inbreeding within the XX-DSD family may contribute to the pathogenesis of XX-DSD pigs. All XX-DSD pigs in the family had a chromosomal sex of female and were male pseudohermaphrodites. The degree of masculinization of the reproductive organs varied among XX-DSD pigs, demonstrating phenotypic heterogeneity. HE staining showed that the testes of prepubescent XX-DSD pigs contained vesicles in the seminiferous tubules, with or without vestigial germ cells. Ultrastructural analyses indicated that sertoli cells, leydig cells and germ cells in the testes of XX-DSD pigs exhibited pathological damage, confirming impaired testicular function. Immunofluorescence staining revealed high expression of SRY-box transcription factor 9 (SOX9) in XX-DSD pig testicular tissues, while forkhead box L2 (FOXL2) was minimally expressed. Disordered secretion of reproductive hormones in prepubescent XX-DSD pigs indicated abnormal hypothalamic-pituitary-gonadal axis (HPGA) function. This study elucidates the genetic and pathological characteristics of prepubescent XX-DSD pigs in familial case, providing valuable insights for further exploration of the pathogenic mechanisms underlying XX-DSD.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Haiyi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| | - Yuqiao Zhang
- Zhongshan Baishi Pig Farm Co., Ltd., Zhongshan 528463, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
3
|
Benzhen L, Shucheng S, Chenchang B, Zhaoxia C, Yanan Y. Transcriptome analysis elucidates mating affects the expression of intra-/extra-ovarian factors, thereby influencing ovarian development in the mud crab Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101334. [PMID: 39378790 DOI: 10.1016/j.cbd.2024.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Prior to the pubertal molt and mating, the ovarian development of the mud crab Scylla paramamosain was primarily at stage II. However, immediately after mating, female crabs initiate vitellogenesis, and their ovaries quickly develop. The aim of this study was to identify differentially expressed genes associated with ovarian development in the mud crab before and after mating, in order to elucidate the influence of mating on ovarian development using comparative transcriptomics. The KEGG pathway analysis results indicated that ribosome and ribosome-related pathways were highly associated with ovarian development at stage II across both transcriptomes, likely to support the subsequent vitellogenesis by providing the necessary materials. Additionally, the neurodegeneration, MAPK, cAMP and PLD pathways were active in regulating oogonia differentiation, oocyte proliferation and vitellogenesis after mating. Meanwhile, certain intra-ovarian factors, such as the cell cycle-related genes cyclin B and APC, the forkhead box family genes Foxl2 and slp1, the SOX family gene SOX5-like, the hormone-related genes SULT1E1 and Eip74EF-like, the growth factor-related genes VEGFD-like and CUBE1-like, as well as HPS10 and tra1-like, have essential functions in regulating ovarian development after mating. Furthermore, the receptors of extra-ovarian hormones, such as RPCHR, HR4, and ILR1, as well as the neurotransmitter receptor 5-HTR4, were involved in ovarian development. It is believed that ovarian development is controlled by the coordinated action of both intrinsic and extrinsic endocrine factors, and these factors are influenced by mating. Finally, the analysis of epigenic modification-related genes, transcription factors, and target genes revealed the regulation of gene expression. Our study indicated that, those genes work in a coordinated manner to regulate the complex processes of follicle cell development, oogonia differentiation, oocyte proliferation, and vitellogenesis during ovarian development.
Collapse
Affiliation(s)
- Li Benzhen
- School of Marine Science, Ningbo University, Ningbo, China
| | - Shao Shucheng
- School of Marine Science, Ningbo University, Ningbo, China
| | - Bao Chenchang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Cui Zhaoxia
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yang Yanan
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
4
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
5
|
Touraine P, Chabbert-Buffet N, Plu-Bureau G, Duranteau L, Sinclair AH, Tucker EJ. Premature ovarian insufficiency. Nat Rev Dis Primers 2024; 10:63. [PMID: 39266563 DOI: 10.1038/s41572-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Premature ovarian insufficiency (POI) is a cause of infertility and endocrine dysfunction in women, defined by loss of normal, predictable ovarian activity before the age of 40 years. POI is clinically characterized by amenorrhoea (primary or secondary) with raised circulating levels of follicle-stimulating hormone. This condition can occur due to medical interventions such as ovarian surgery or cytotoxic cancer therapy, metabolic and lysosomal storage diseases, infections, chromosomal anomalies and autoimmune diseases. At least 1 in 100 women is affected by POI, including 1 in 1,000 before the age of 30 years. Substantial evidence suggests a genetic basis to POI. However, the cause of idiopathic POI remains unknown in most patients, indicating that gene variants associated with this condition remain to be discovered. Over the past 10 years, tremendous progress has been made in our knowledge of genes involved in POI. Genetic approaches in diagnosis are important as they enable patients with familial POI to be identified, with the opportunity for oocyte preservation. Moreover, genetic approaches could provide a better understanding of disease mechanisms, which will ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP Pitié Salpêtrière Hospital, Sorbonne Université Médecine, Paris, France.
- Inserm U1151 INEM, Necker Hospital, Paris, France.
| | - Nathalie Chabbert-Buffet
- Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, AP-HP Sorbonne Université, Paris, France
- INSERM UMR S 938, CDR St Antoine, Paris, France
| | - Genevieve Plu-Bureau
- Department of Medical Gynecology, AP-HP Port Royal-Cochin Hospital, Université Paris Cité, Paris, France
- U1151 EPOPEE Team, Paris, France
| | - Lise Duranteau
- Department of Medical Gynecology, Bicêtre Hospital, AP-HP Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Jordan P, Verebi C, Hervé B, Perol S, Chakhtoura Z, Courtillot C, Bachelot A, Karila D, Renard C, Grouthier V, de la Croix SM, Bernard V, Fouveaut C, de la Perrière AB, Jonard-Catteau S, Touraine P, Plu-Bureau G, Dupont JM, Christin-Maitre S, Bienvenu T. Shifting the landscape: Dominant C-terminal rare missense FOXL2 variants in non-syndromic primary ovarian failure etiology. Clin Genet 2024; 106:102-108. [PMID: 38558253 DOI: 10.1111/cge.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Pathogenic germline variants in the FOXL2 gene are associated with Blepharophimosis, Ptosis, and Epicanthus Inversus syndrome (BPES) in humans, an autosomal dominant condition. Two forms of BPES have emerged: (i) type I (BPES-I), characterized by ocular signs and primary ovarian failure (POI), and (ii) type II (BPES-II) with no systemic associations. This study aimed to compare the distribution of FOXL2 variants in idiopathic POI/DOR (diminished ovarian reserve) and both types of BPES, and to determine the involvement of FOXL2 in non-syndromic forms of POI/DOR. We studied the whole coding region of the FOXL2 gene using next-generation sequencing in 1282 patients with non-syndromic POI/DOR. Each identified FOXL2 variant was compared to its frequency in the general population, considering ethnicity. Screening of the entire coding region of the FOXL2 gene allowed us to identify 10 different variants, including nine missense variants. Of the patients with POI/DOR, 14 (1%) carried a FOXL2 variant. Significantly, six out of nine missense variants (67%) were overrepresented in our POI/DOR cohort compared to the general or specific ethnic subgroups. Our findings strongly suggest that five rare missense variants, mainly located in the C-terminal region of FOXL2 are high-risk factors for non-syndromic POI/DOR, though FOXL2 gene implication accounts for approximately 0.54% of non-syndromic POI/DOR cases. These results support the implementation of routine genetic screening for patients with POI/DOR in clinical settings.
Collapse
Affiliation(s)
- Pénélope Jordan
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP. Centre Université de Paris Cité, Paris, France
| | - Camille Verebi
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP. Centre Université de Paris Cité, Paris, France
| | - Bérénice Hervé
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP. Centre Université de Paris Cité, Paris, France
| | - Sandrine Perol
- Unité de Gynécologie Médicale, APHP. Centre Université Paris Cité, Hôpital Cochin, Paris, France
| | - Zeina Chakhtoura
- Département d'Endocrinologie et Médecine de la Reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, ERN-HCP, Paris, France
| | - Carine Courtillot
- Département d'Endocrinologie et Médecine de la Reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, ERN-HCP, Paris, France
| | - Anne Bachelot
- Département d'Endocrinologie et Médecine de la Reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, ERN-HCP, Paris, France
| | - Daphné Karila
- Service d'endocrinologie, diabétologie et Médecine de la Reproduction, APHP. Sorbonne Université, Hôpital Saint-Antoine, Paris, France
| | | | | | | | - Valérie Bernard
- Service de Chirurgie Gynécologique et Médecine de la Reproduction, Gynécologie Médicale, CHU Bordeaux, Bordeaux, France
| | - Corinne Fouveaut
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP. Centre Université de Paris Cité, Paris, France
| | - Aude Brac de la Perrière
- Service d'Endocrinologie, de Diabétologie et des Maladies Métaboliques A, Hospices Civiles de Lyon, Lyon, France
| | - Sophie Jonard-Catteau
- Département d'Assistance Médicale à la Procréation, Hôpital Jeanne de Flandre, Lille, France
| | - Philippe Touraine
- Département d'Endocrinologie et Médecine de la Reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, ERN-HCP, Paris, France
| | - Geneviève Plu-Bureau
- Unité de Gynécologie Médicale, APHP. Centre Université Paris Cité, Hôpital Cochin, Paris, France
| | - Jean Michel Dupont
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP. Centre Université de Paris Cité, Paris, France
| | - Sophie Christin-Maitre
- Service d'endocrinologie, diabétologie et Médecine de la Reproduction, APHP. Sorbonne Université, Hôpital Saint-Antoine, Paris, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, APHP. Centre Université de Paris Cité, Paris, France
| |
Collapse
|
7
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
8
|
Suzuki A, Uranishi K, Nishimoto M, Mizuno Y, Mizuno S, Takahashi S, Eisenman RN, Okuda A. MAX controls meiotic entry in sexually undifferentiated germ cells. Sci Rep 2024; 14:5236. [PMID: 38433229 PMCID: PMC10909893 DOI: 10.1038/s41598-024-55506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
Meiosis is a specialized type of cell division that occurs physiologically only in germ cells. We previously demonstrated that MYC-associated factor X (MAX) blocks the ectopic onset of meiosis in embryonic and germline stem cells in culture systems. Here, we investigated the Max gene's role in mouse primordial germ cells. Although Max is generally ubiquitously expressed, we revealed that sexually undifferentiated male and female germ cells had abundant MAX protein because of their higher Max gene expression than somatic cells. Moreover, our data revealed that this high MAX protein level in female germ cells declined significantly around physiological meiotic onset. Max disruption in sexually undifferentiated germ cells led to ectopic and precocious expression of meiosis-related genes, including Meiosin, the gatekeeper of meiotic onset, in both male and female germ cells. However, Max-null male and female germ cells did not complete the entire meiotic process, but stalled during its early stages and were eventually eliminated by apoptosis. Additionally, our meta-analyses identified a regulatory region that supports the high Max expression in sexually undifferentiated male and female germ cells. These results indicate the strong connection between the Max gene and physiological onset of meiosis in vivo through dynamic alteration of its expression.
Collapse
Affiliation(s)
- Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Yosuke Mizuno
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
9
|
Shen Q, Zhao X, Ji Y, Chai P. Deletion of cis-regulatory Element in FOXL2 Promoter in a Chinese Family of Type II Blepharophimosis-ptosis-epicanthus Inversus Syndrome with Polydactyly. J Craniofac Surg 2024; 35:e52-e56. [PMID: 37938073 PMCID: PMC10749674 DOI: 10.1097/scs.0000000000009801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 11/09/2023] Open
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a relatively uncommon autosomal-dominant genetic disorder, primarily attributed to mutations in the forkhead box L2 (FOXL2) gene. Albeit the involvement of protein-coding regions of FOXL2 has been observed in the majority of BPES cases, whether deficiencies in regulatory elements lead to the pathogenesis remains poorly understood. Herein, an autosomal-dominant BPES type II family was included. Peripheral venous blood has been collected, and genomic DNA has been extracted from leukocytes. A whole exome sequencing analysis has been performed and analyzed (Deposited in NODE database: OER422653). The promoter region of FOXL2 was amplified using polymerase chain reaction (PCR). The luciferase reporter assay was performed to identify the activity of this region. In this study, we present a Chinese family diagnosed with type II BPES, characterized by the presence of small palpebral fissures, ptosis, telecanthus, and epicanthus inversus. Notably, all male individuals within the family display polydactyly. A 225-bp deletion in the 556-bp 5'-upstream to transcription start site of FOXL2 , decorated by multiple histone modifications, was identified in affected members of the family. This deletion significantly decreased FOXL2 promoter activity, as measured by the luciferase assay. Conclusively, a novel 255-bp-deletion of the FOXL2 promoter was identified in Chinese families with BPES. Our results expand the spectrum of known FOXL2 mutations and provide additional insight into the genotype-phenotype relationships of the BPES pathogenesis. In addition, this study indicates the important role of genetic screening of cis-regulatory elements in testing heritable diseases.
Collapse
Affiliation(s)
- Qin Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xiaojun Zhao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yongrong Ji
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
12
|
Cai P, Yuan H, Gao Z, Daka P, Qiao H, Zhang W, Jiang S, Xiong Y, Gong Y, Wu Y, Jin S, Fu H. Sex Reversal Induced by Dietary Supplementation with 17α-Methyltestosterone during the Critical Period of Sex Differentiation in Oriental River Prawn ( Macrobrachium nipponense). Animals (Basel) 2023; 13:1369. [PMID: 37106932 PMCID: PMC10135079 DOI: 10.3390/ani13081369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The steroid 17α-methyltestosterone (MT) inhibits ovarian function and is often used to induce sex reversal artificially in vertebrates. In the present study, different concentrations of MT were added as dietary supplementation, and the effects on sex ratio, growth, and gonadal development were examined. After 40 days, the sex ratio (male:female) in each group increased at different degrees with 50 (1.36:1), 100 (1.57:1), and 200 (2.61:1) mg/kg MT, and neo-males with testis-ovary coexistence were observed in the 200 mg/kg MT group. Furthermore, 50 and 100 mg/kg MT could induce female reversion in neo-males. Histologically, the development of the testes in experimental groups was slower, but the ovaries of the experimental and control groups had similar developmental rates. The expression levels of DMRT11E, Foxl2, and SoxE1 in males at 200 mg/kg MT were 8.65-, 3.75-, and 3.45-fold greater than those of the control group. In crustaceans, sex reversal through vertebrate sex hormones can be observed. Neo-males (sex-reversed female prawns) were maintained by exogenous androgen, and over-reliance led to slow testis growth, small body size, and low growth rate, but sperm was still produced. In female prawns, MT inhibited ovary development and promoted growth.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Peter Daka
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
13
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Li J, Gao L, Wang A, Qian H, Zhu J, Ji S, Chen J, Liu Z, Ji C. Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer. Cancer Med 2023; 12:9826-9842. [PMID: 36846934 PMCID: PMC10166978 DOI: 10.1002/cam4.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC. METHODS RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice. RESULTS FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo. CONCLUSIONS miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Huiwen Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Shundong Ji
- Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|