1
|
Wu C, Pan X, Xu L, Lu Z, Wang Z, Xu L, Xu Y. Development of a risk predication model for critical care needs in patients with intracerebral hemorrhage: a retrospective cohort. BMC Nurs 2024; 23:770. [PMID: 39427213 PMCID: PMC11490994 DOI: 10.1186/s12912-024-02319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/03/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND It is very important to provide the correct nursing care for patients with intracerebral hemorrhage (ICH), but the level of critical care needs in patients with intracerebral hemorrhage is not clear. The purpose of this study is to establish a risk model based on the epidemiological and clinical characteristics of ICH patients, to help identify the critical care needs of ICH patients. METHODS The clinical data of ICH patients from January 2018 to September 2023 were analyzed retrospectively. The full cohort was used to derive the clinical prediction model and the model was internally validated with bootstrapping. Discrimination and calibration were assessed using the area under curve (AUC) and the Hosmer-Lemeshow tests, respectively. RESULTS 611 patients with ICH were included for model development. 61.21% (374/611) ICH patients had received critical care interventions. The influencing factors included in the model were Glasgow Coma Scale (GCS) score, intraventricular hemorrhage, past blood pressure control, systolic blood pressure on admission and bleeding volume. The model's goodness-of-fit was evaluated, which yielded a high area under the curve (AUC) value of 0.943, indicating a good fit. For the purpose of model validation, a cohort of 260 patients with ICH was utilized. The model demonstrated a Youden's index of 0.750, with a sensitivity of 90.56% and a specificity of 78.22%. CONCLUSION GCS, systolic blood pressure, intraventricular hemorrhage, bleeding volume and past blood pressure control are the main factors affecting the critical care needs of patients with ICH. This study has deduced a clinical predictive model with good discrimination and calibration to provide scoring criteria for clinical health care providers to accurately evaluate and identify the critical care needs of ICH patients, to improve the rational integration and allocation of medical resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, 188 Shizi street, Gusu district, Suzhou, Jiangsu province, China
| | - Xi Pan
- Department of Nursing, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lujie Xu
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, 188 Shizi street, Gusu district, Suzhou, Jiangsu province, China
| | - Ziwei Lu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, 188 Shizi street, Gusu district, Suzhou, Jiangsu province, China
| | - Lan Xu
- Department of Nursing, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Xu
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, 188 Shizi street, Gusu district, Suzhou, Jiangsu province, China.
| |
Collapse
|
3
|
Ma L, Hu X, Song L, Chen X, Ouyang M, Billot L, Li Q, Malavera A, Li X, Muñoz-Venturelli P, de Silva A, Thang NH, Wahab KW, Pandian JD, Wasay M, Pontes-Neto OM, Abanto C, Arauz A, Shi H, Tang G, Zhu S, She X, Liu L, Sakamoto Y, You S, Han Q, Crutzen B, Cheung E, Li Y, Wang X, Chen C, Liu F, Zhao Y, Li H, Liu Y, Jiang Y, Chen L, Wu B, Liu M, Xu J, You C, Anderson CS. The third Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3): an international, stepped wedge cluster randomised controlled trial. Lancet 2023; 402:27-40. [PMID: 37245517 PMCID: PMC10401723 DOI: 10.1016/s0140-6736(23)00806-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Early control of elevated blood pressure is the most promising treatment for acute intracerebral haemorrhage. We aimed to establish whether implementing a goal-directed care bundle incorporating protocols for early intensive blood pressure lowering and management algorithms for hyperglycaemia, pyrexia, and abnormal anticoagulation, implemented in a hospital setting, could improve outcomes for patients with acute spontaneous intracerebral haemorrhage. METHODS We performed a pragmatic, international, multicentre, blinded endpoint, stepped wedge cluster randomised controlled trial at hospitals in nine low-income and middle-income countries (Brazil, China, India, Mexico, Nigeria, Pakistan, Peru, Sri Lanka, and Viet Nam) and one high-income country (Chile). Hospitals were eligible if they had no or inconsistent relevant, disease-specific protocols, and were willing to implement the care bundle to consecutive patients (aged ≥18 years) with imaging-confirmed spontaneous intracerebral haemorrhage presenting within 6 h of the onset of symptoms, had a local champion, and could provide the required study data. Hospitals were centrally randomly allocated using permuted blocks to three sequences of implementation, stratified by country and the projected number of patients to be recruited over the 12 months of the study period. These sequences had four periods that dictated the order in which the hospitals were to switch from the control usual care procedure to the intervention implementation of the care bundle procedure to different clusters of patients in a stepped manner. To avoid contamination, details of the intervention, sequence, and allocation periods were concealed from sites until they had completed the usual care control periods. The care bundle protocol included the early intensive lowering of systolic blood pressure (target <140 mm Hg), strict glucose control (target 6·1-7·8 mmol/L in those without diabetes and 7·8-10·0 mmol/L in those with diabetes), antipyrexia treatment (target body temperature ≤37·5°C), and rapid reversal of warfarin-related anticoagulation (target international normalised ratio <1·5) within 1 h of treatment, in patients where these variables were abnormal. Analyses were performed according to a modified intention-to-treat population with available outcome data (ie, excluding sites that withdrew during the study). The primary outcome was functional recovery, measured with the modified Rankin scale (mRS; range 0 [no symptoms] to 6 [death]) at 6 months by masked research staff, analysed using proportional ordinal logistic regression to assess the distribution in scores on the mRS, with adjustments for cluster (hospital site), group assignment of cluster per period, and time (6-month periods from Dec 12, 2017). This trial is registered at Clinicaltrials.gov (NCT03209258) and the Chinese Clinical Trial Registry (ChiCTR-IOC-17011787) and is completed. FINDINGS Between May 27, 2017, and July 8, 2021, 206 hospitals were assessed for eligibility, of which 144 hospitals in ten countries agreed to join and were randomly assigned in the trial, but 22 hospitals withdrew before starting to enrol patients and another hospital was withdrawn and their data on enrolled patients was deleted because regulatory approval was not obtained. Between Dec 12, 2017, and Dec 31, 2021, 10 857 patients were screened but 3821 were excluded. Overall, the modified intention-to-treat population included 7036 patients enrolled at 121 hospitals, with 3221 assigned to the care bundle group and 3815 to the usual care group, with primary outcome data available in 2892 patients in the care bundle group and 3363 patients in the usual care group. The likelihood of a poor functional outcome was lower in the care bundle group (common odds ratio 0·86; 95% CI 0·76-0·97; p=0·015). The favourable shift in mRS scores in the care bundle group was generally consistent across a range of sensitivity analyses that included additional adjustments for country and patient variables (0·84; 0·73-0·97; p=0·017), and with different approaches to the use of multiple imputations for missing data. Patients in the care bundle group had fewer serious adverse events than those in the usual care group (16·0% vs 20·1%; p=0·0098). INTERPRETATION Implementation of a care bundle protocol for intensive blood pressure lowering and other management algorithms for physiological control within several hours of the onset of symptoms resulted in improved functional outcome for patients with acute intracerebral haemorrhage. Hospitals should incorporate this approach into clinical practice as part of active management for this serious condition. FUNDING Joint Global Health Trials scheme from the Department of Health and Social Care, the Foreign, Commonwealth & Development Office, and the Medical Research Council and Wellcome Trust; West China Hospital; the National Health and Medical Research Council of Australia; Sichuan Credit Pharmaceutic and Takeda China.
Collapse
Affiliation(s)
- Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Song
- The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xiaoying Chen
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Menglu Ouyang
- The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Laurent Billot
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiang Li
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alejandra Malavera
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xi Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Paula Muñoz-Venturelli
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Clinical Research Center, Faculty of Medicine Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Asita de Silva
- Clinical Trials Unit, Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | | | - Kolawole W Wahab
- Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Jeyaraj D Pandian
- Neurology Department, Christian Medical College and Hospital, Ludhiana, India
| | - Mohammad Wasay
- Department of Medicine, The Aga Khan University, Karachi, Pakistan
| | - Octavio M Pontes-Neto
- Department of Neurology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos Abanto
- The Cerebrovascular Disease Research Center, National Institute of Neurological Sciences, Lima, Peru
| | - Antonio Arauz
- Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, Mexico City, Mexico
| | - Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Guanghai Tang
- Department of Neurology, Liaoning Thrombus Treatment Centre of Integrated Chinese and Western Medicine, Shenyang, China
| | - Sheng Zhu
- Department of Neurosurgery, Dazhu County People's Hospital, Dazhou, China
| | - Xiaochun She
- Department of Neurosurgery, Jiangsu Rudong County People's Hospital, Nantong, China
| | - Leibo Liu
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Yuki Sakamoto
- Department of Neurology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shoujiang You
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiao Han
- Department of Neurology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Bernard Crutzen
- Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Department of Radiology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Emily Cheung
- Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Yunke Li
- The George Institute for Global Health China, Beijing, China
| | - Xia Wang
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chen Chen
- The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Feifeng Liu
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yang Zhao
- The George Institute for Global Health China, Beijing, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Jiang
- Department of Nursing and Evidence-based Nursing Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Craig S Anderson
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Clinical Research Center, Faculty of Medicine Clinica Alemana Universidad del Desarrollo, Santiago, Chile; Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia; Heart Health Research Center, Beijing, China.
| |
Collapse
|