1
|
Favaloro E, Koutts J, Mina A. A novel flow cytometry single tube bead assay for quantitation of von Willebrand factor antigen and collagen-binding. Thromb Haemost 2017; 108:999-1005. [DOI: 10.1160/th12-05-0294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/11/2012] [Indexed: 11/05/2022]
Abstract
SummaryDeficiency of or defects in the plasma protein von Willebrand factor (VWF) lead to bleeding and von Willebrand disease (VWD), which may be congenital or acquired. VWD is considered the most common inherited bleeding disorder and laboratory testing for VWF level and activity is critical for appropriate diagnosis and management. We have designed and established a novel Flow Cytometry (FC) based method for measuring VWF antigen (VWF:Ag) and collagen binding (VWF:CB), together in the same tube and at the same time. The results of the novel FC method have been compared against existing reference methods using a range of normal and pathological material. Methods correlated well (VWF:Ag, r=0.866; VWF:CB, r=0.888) and generally permitted similar discrimination of quantitative versus qualitative VWD types (e.g. type 1 vs type 2A or 2B VWD). The novel procedure is expected to permit future streamlined performance of VWD screening, either using stand-alone FC systems or potentially incorporated into FC-capable automated blood cell and particle counters to allow for improved, automated and faster identification or exclusion of VWD.
Collapse
|
2
|
Bodó I, Eikenboom J, Montgomery R, Patzke J, Schneppenheim R, Di Paola J. Platelet-dependent von Willebrand factor activity. Nomenclature and methodology: communication from the SSC of the ISTH. J Thromb Haemost 2015; 13:1345-50. [PMID: 25858564 PMCID: PMC5576173 DOI: 10.1111/jth.12964] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/29/2015] [Indexed: 12/26/2022]
Affiliation(s)
- I Bodó
- Department of Hematology and Stem Cell Transplantation, St László Hospital, Budapest, Hungary
| | - J Eikenboom
- Department of Thrombosis and Hemostasis, Leiden University Medical School, Leiden, the Netherlands
| | - R Montgomery
- Department of Pediatrics - MFRC, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Patzke
- Department of Assay Development, Siemens Healthcare Diagnostic Products GmbH, Marburg, Germany
| | - R Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Di Paola
- Pediatrics/Genetics, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
3
|
Timm A, Hillarp A, Philips M, Goetze JP. Comparison of automated von Willebrand factor activity assays. Thromb Res 2015; 135:684-91. [DOI: 10.1016/j.thromres.2015.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
4
|
Patzke J, Budde U, Huber A, Méndez A, Muth H, Obser T, Peerschke E, Wilkens M, Schneppenheim R. Performance evaluation and multicentre study of a von Willebrand factor activity assay based on GPIb binding in the absence of ristocetin. Blood Coagul Fibrinolysis 2014; 25:860-70. [DOI: 10.1097/mbc.0000000000000169] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Haji-Valizadeh H, Modery-Pawlowski CL, Sen Gupta A. A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets. NANOSCALE 2014; 6:4765-73. [PMID: 24658160 PMCID: PMC4300948 DOI: 10.1039/c3nr06400j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide-lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet's primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF's D'-D3 domain while natural platelet GPIbα binds to VWF's A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF's A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP.
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
6
|
Cabrera N, Moret A, Caunedo P, Cid AR, Vila V, España F, Aznar JA. Comparison of a new chemiluminescent immunoassay for von Willebrand factor activity with the ristocetin cofactor-induced platelet agglutination method. Haemophilia 2013; 19:920-5. [PMID: 23730809 DOI: 10.1111/hae.12203] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2013] [Indexed: 11/28/2022]
Abstract
Measuring von Willebrand factor (VWF) activity is essential for the diagnosis of von Willebrand disease (VWD). The VWF activity is usually assessed based on measurement of the ristocetin cofactor (VWF:RCo). However, that test is technically challenging and has high intra- and inter-assay variabilities. A new automated chemiluminescent immunoassay VWF activity has recently become commercially available (HemosIL AcuStar von Willebrand Factor Ristocetin Cofactor Activity). The main objective of this study was to evaluate this new method and to compare it with the VWF:RCo assay as the reference method. We studied 91 samples, 18 healthy volunteers samples and 73 samples from patients (VWF:RCo level <50 IU dL(-1) ): 29 type 1 VWD, 13 type 2A, 5 type 2B, 5 type 2M, 3 type 2N, 5 type 3, 4 type 3 under treatment, 5 type 3 carriers and 4 samples with other pathologies. The HemosIL AcuStar VWF:RCo assay was 96% sensitive and 100% specific for detecting VWF abnormalities. The good analytical performance, and the sensitivity and specificity of HemosIL AcuStar VWF:RCo to detect VWF deficiency renders it a suitable method for VWD screening.
Collapse
Affiliation(s)
- N Cabrera
- Unidad de Hemostasia y Trombosis, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Chen D, Tange JI, Meyers BJ, Pruthi RK, Nichols WL, Heit JA. Validation of an automated latex particle-enhanced immunoturbidimetric von Willebrand factor activity assay. J Thromb Haemost 2011; 9:1993-2002. [PMID: 21824283 DOI: 10.1111/j.1538-7836.2011.04460.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Laboratory diagnosis of von Willebrand disease (VWD) requires accurate measurement of plasma von Willebrand factor (VWF) activity. OBJECTIVES To evaluate laboratory characteristics, diagnostic accuracy and testing utilities of an automated latex particle-enhanced immunoturbidimetric VWF assay (VWF:Lx) based on a monoclonal antibody recognizing the VWF-platelet glycoprotein (GP) Ib binding domain. METHODS Laboratory characteristics including lower detection limit, linearity, precision, sample stability, and method comparison between VWF:Lx and VWF ristocetin cofactor activity by platelet aggregometry (VWF:RCo) were examined. To assess VWF:Lx diagnostic accuracy, 492 patient plasma samples, including 40 previously characterized VWD patient samples, were tested for VWF antigen (VWF:Ag) and VWF:RCo by either aggregometry or flow cytometry, and VWF:Lx with supplemental VWF multimer analysis when indicated. Based on results of VWF:Ag, VWF:RCo and VWF multimer analysis, and available clinical information, samples were categorized as: normal; VWD types 1, 2A/B, 2M, or severe 1 vs. 2M; or acquired VWF abnormalities (AVWA) due to subtle loss of highest molecular weight multimers. RESULTS VWF:Lx had excellent laboratory characteristics and linear correlation with VWF:RCo (R(2) = 0.93). VWF:Lx accurately classified virtually all normal and VWD patient samples. Compared with VWF:RCo, VWF:Lx had superior sensitivity and specificity for distinguishing severe type 1 vs. 2M VWD and identifying AVWA. A proposed screening panel comprising VWF:Ag and VWF:Lx had 100% and 83% sensitivity for detecting VWD and AVWA, respectively. CONCLUSIONS VWF:Lx has excellent laboratory characteristics and diagnostic accuracy compared with VWF:RCo, and can be used as part of an initial VWD screening panel and as a supplementary test.
Collapse
Affiliation(s)
- D Chen
- Special Coagulation Laboratory, Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Lasne D, Dey C, Dautzenberg MD, Cherqaoui Z, Monge F, Aouba A, Torchet MF, Geloen D, Landais P, Rothschild C. Screening for von Willebrand disease: contribution of an automated assay for von Willebrand factor activity. Haemophilia 2011; 18:e158-63. [PMID: 21951857 DOI: 10.1111/j.1365-2516.2011.02662.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring von Willebrand factor (VWF) activity is essential to the diagnosis of von Willebrand disease (VWD). The VWF activity is usually assessed based on measurement of the ristocetin cofactor (VWF:RCo). However, that test is technically challenging and has high intra- and inter-assay variabilities. The HemosIL VWF activity (VWF:AC) is a fully automated assay, recently proposed as a good alternative to VWF:RCo for VWD diagnosis. This study was undertaken to assess this new method. First, the analytical performance of VWF:AC on an automated coagulo-meter (ACLTop) was determined, and then this new method was compared with VWF:RCo and the platelet function analyzer (PFA100) for 160 patients referred for VWD screening. The VWF:AC achieved acceptable precision with within-run and between-run coefficients of variation ranging from 2.3% to 14.1%, and linearity from 10% to 100%. Despite some marked differences between VWF:AC and VWF:RCo for 10 plasmas tested, their agreement for VWD diagnosis was good. The VWF:AC had sensitivity similar to that of PFA100 (close to 100%), but better specificity (97.7% vs. 66% or 60%, depending on the cartridge used). The good analytical performance, and the sensitivity and specificity of VWF:AC to detect VWF deficiency renders it a suitable method for VWD screening. Our findings support VWF:AC use for the diagnostic work-up of VWD, paying close attention to concomitant clinical signs and bleeding score, as recommended for VWD.
Collapse
Affiliation(s)
- D Lasne
- Laboratoire d'Hématologie, Hôpital Necker, AP-HP, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Szanto T, Vanhoorelbeke K, Toth G, Vandenbulcke A, Toth J, Noppe W, Deckmyn H, Harsfalvi J. Identification of a VWF peptide antagonist that blocks platelet adhesion under high shear conditions by selectively inhibiting the VWF-collagen interaction. J Thromb Haemost 2009; 7:1680-7. [PMID: 19624458 DOI: 10.1111/j.1538-7836.2009.03552.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Because the collagen-VWF-GPIb/IX/V axis plays an important role in thrombus formation, it represents a promising target for development of new antithrombotic agents. OBJECTIVES We used phage display to identify potential small peptides that interfere with the VWF-collagen binding and might serve as lead products for the development of possible oral antithrombotic compounds. METHODS A random linear heptamer peptide library was used to select VWF-binding peptides. RESULTS We identified a phage clone, displaying the YDPWTPS sequence, further referred to as L7-phage, that bound to VWF in a specific and a dose-dependent manner. This L7-phage specifically inhibited the VWF-collagen interaction under both static and flow conditions. Epitope mapping using deletion mutants of VWF revealed that the L7-phage does not bind to the known collagen-binding A3 domain within VWF, but to the more carboxyterminal situated C domain. This inhibition was not due to steric hindrance of the A3 domain-collagen interaction by the L7-phage. Indeed, a tetrabranched multi-antigen peptide (MAP) presenting four copies of the peptide, but not the scrambled MAP, also inhibited VWF-collagen interaction under conditions of high shear stress at a concentration of 148 nmol L(-1). CONCLUSIONS Based on these results, we conclude that we have identified the first peptide antagonist that binds to the VWF C domain and by this specifically inhibits the VWF binding to collagen, suppressing platelet adhesion and aggregation under high shear conditions. As a consequence, this peptide and its future derivates are potentially interesting antithrombotic agents.
Collapse
Affiliation(s)
- T Szanto
- Clinical Research Center, Medical and Health Science Center, University of Debrecen, Debrecen H-4012, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nichols WL, Hultin MB, James AH, Manco-Johnson MJ, Montgomery RR, Ortel TL, Rick ME, Sadler JE, Weinstein M, Yawn BP. von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 2008; 14:171-232. [PMID: 18315614 DOI: 10.1111/j.1365-2516.2007.01643.x] [Citation(s) in RCA: 580] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- W L Nichols
- Special Coagulation Laboratory, Division of Hematopathology, Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
David T, Ohlmann P, Eckly A, Moog S, Cazenave JP, Gachet C, Lanza F. Inhibition of adhesive and signaling functions of the platelet GPIb-V-IX complex by a cell penetrating GPIbalpha peptide. J Thromb Haemost 2006; 4:2645-55. [PMID: 17100656 DOI: 10.1111/j.1538-7836.2006.02198.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Interaction between the platelet glycoprotein (GP)Ib-V-IX complex and von Willebrand factor (VWF) is critical for initiating platelet-vessel wall contacts, particularly under high shear conditions. This interaction also plays an important role in initiating platelet activation through the generation of intracellular signals resulting in platelet shape change and integrin alpha(IIb)beta3 activation. OBJECTIVE A cell-penetrating peptide strategy was used to study the role of the intracellular domain of the GPIbalpha subunit in VWF/GPIb-V-IX-dependent adhesion and activation. METHODS Peptides of 11-13 amino acids, covering the 557-610 region, were coupled to a nine-arginine permeating tag (R9) and the effects of their cell entry on VWF-dependent responses were analyzed. RESULTS The R9alpha557 peptide corresponding to the 557-569 segment reduced platelet agglutination in response to VWF, while the other peptides had no effect. The decreased platelet agglutination appeared to be an indirect consequence of adenosine diphosphate release as a normal response was restored by apyrase or a P2Y1 receptor antagonist. A more direct effect of R9alpha557 on GPIb VWF-dependent functions was observed in adhesion studies on a VWF matrix, where it decreased platelet adhesion and profoundly inhibited filopodia formation. In addition, cell adhesion was reduced and shape change absent when Chinese hamster ovary cells expressing the GPIb-IX complex were incubated with R9alpha557. CONCLUSION This study performed in intact platelets suggests a functional role of the 557-569 domain of GPIbalpha in controlling VWF-dependent adhesion and signaling.
Collapse
Affiliation(s)
- T David
- INSERM U311, Strasbourg; EFS-Alsace, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Sadler JE, Budde U, Eikenboom JCJ, Favaloro EJ, Hill FGH, Holmberg L, Ingerslev J, Lee CA, Lillicrap D, Mannucci PM, Mazurier C, Meyer D, Nichols WL, Nishino M, Peake IR, Rodeghiero F, Schneppenheim R, Ruggeri ZM, Srivastava A, Montgomery RR, Federici AB. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 4:2103-14. [PMID: 16889557 DOI: 10.1111/j.1538-7836.2006.02146.x] [Citation(s) in RCA: 757] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
von Willebrand disease (VWD) is a bleeding disorder caused by inherited defects in the concentration, structure, or function of von Willebrand factor (VWF). VWD is classified into three primary categories. Type 1 includes partial quantitative deficiency, type 2 includes qualitative defects, and type 3 includes virtually complete deficiency of VWF. VWD type 2 is divided into four secondary categories. Type 2A includes variants with decreased platelet adhesion caused by selective deficiency of high-molecular-weight VWF multimers. Type 2B includes variants with increased affinity for platelet glycoprotein Ib. Type 2M includes variants with markedly defective platelet adhesion despite a relatively normal size distribution of VWF multimers. Type 2N includes variants with markedly decreased affinity for factor VIII. These six categories of VWD correlate with important clinical features and therapeutic requirements. Some VWF gene mutations, alone or in combination, have complex effects and give rise to mixed VWD phenotypes. Certain VWD types, especially type 1 and type 2A, encompass several pathophysiologic mechanisms that sometimes can be distinguished by appropriate laboratory studies. The clinical significance of this heterogeneity is under investigation, which may support further subdivision of VWD type 1 or type 2A in the future.
Collapse
Affiliation(s)
- J E Sadler
- Howard Hughes Medical Institute, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|