1
|
Wu D, Zhu P, Shi Z, Li C, Wu C, Sun W, Ran J. Autologous Platelet-Rich Gel Accelerates Diabetic Wound Healing Through Inhibition of Ferritinophagy. INT J LOW EXTR WOUND 2024:15347346241258528. [PMID: 38839257 DOI: 10.1177/15347346241258528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Aims: The objective was to examine the efficacy of autologous platelet-rich gel (APG) in treating diabetic wound and investigate the association between APG and ferritinophagy. Methods: A total of 32 patients with diabetic foot (DF) and Wagner grade 1 to 2 were included. Within the APG group, individuals with DF received weekly APG treatment. In the non-APG group, DF patients received daily dressing changes. Flow cytometry quantified the proportion of endothelial progenitor cells (EPCs) in peripheral blood on days 0 and 10. The diabetic rat model was induced using Streptozotocin. Two circular skin wounds were created on the backs of rats. The normal glucose group received daily dressing changes on the wound. In the diabetic group, the left wound underwent daily dressing changes, whereas the right wound was treated with APG once a week. CD34 levels were tested 7 days after the skin damage. The levels of glutathione peroxidase 4 (GPX4), Nuclear Receptor Coactivator 4 (NCOA4), Light chain 3 (LC3), and Masson staining were quantified on 14 days. The wound area and wound healing rate were separately measured at 0 and 14 days after the injury, regardless of DF patients or diabetic rats. Results: The wound healing rate was higher in the APG group than in the non-APG group, regardless of DF patients or diabetic rats. The APG group had a greater ΔEPCs% in DF patients than the non-APG group. Regarding rat experiment, the APG group exhibited lower levels of NCOA4, and LC3 expressions and a shorter wound healing time. However, the APG group showed higher levels of CD34 expression, GPX4 protein, and collagen fibers than the non-APG group. Conclusions: Autologous platelet-rich gel accelerated the wound healing rate in diabetic populations and rats. Autologous platelet-rich gel promoted EPCs counts, collagen fiber volume, and vessel numbers. Autologous platelet-rich gel decreased LC3 and NCOA4 expression, but increased GPX4 protein expression. The possible mechanism was the inhibition of ferritinophagy.
Collapse
Affiliation(s)
- Daoai Wu
- Department of Endocrinology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Ping Zhu
- Department of Endocrinology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
| | - Zhaoming Shi
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Chen Li
- Department of Blood Transfusion, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Chenchen Wu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Weihua Sun
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jianmin Ran
- Department of Endocrinology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Lu D, Jiao X, Jiang W, Yang L, Gong Q, Wang X, Wei M, Gong S. Mesenchymal stem cells influence monocyte/macrophage phenotype: Regulatory mode and potential clinical applications. Biomed Pharmacother 2023; 165:115042. [PMID: 37379639 DOI: 10.1016/j.biopha.2023.115042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from a variety of tissues, such as umbilical cord, fat, and bone marrow. Today, MSCs are widely recognized for their prominent anti-inflammatory properties in a variety of acute and chronic inflammatory diseases. In inflammatory diseases, monocytes/macrophages are an important part of the innate immune response in the body, and the alteration of the inflammatory phenotype plays a crucial role in the secretion of pro-inflammatory/anti-inflammatory factors, the repair of injured sites, and the infiltration of inflammatory cells. In this review, starting from the effect of MSCs on the monocyte/macrophage phenotype, we have outlined in detail the process by which MSCs influence the transformation of the monocyte/macrophage inflammatory phenotype, emphasizing the central role of monocytes/macrophages in MSC-mediated anti-inflammatory and damage site repair. MSCs are phagocytosed by monocytes/macrophages in various physiological states, the paracrine effect of MSCs and mitochondrial transfer of MSCs to macrophages to promote the transformation of monocytes/macrophages into anti-inflammatory phenotypes. We also review the clinical applications of the MSCs-monocytes/macrophages system and describe novel pathways between MSCs and tissue repair, the effects of MSCs on the adaptive immune system, and the effects of energy metabolism levels on monocyte/macrophage phenotypic changes.
Collapse
Affiliation(s)
- Dejin Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wenjian Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Li Yang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qian Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Sidiropoulou S, Papadaki S, Tsouka AN, Koutsaliaris IK, Chantzichristos VG, Pantazi D, Paschopoulos ME, Hansson KM, Tselepis AD. The Effect of Platelet-Rich Plasma on Endothelial Progenitor Cell Functionality. Angiology 2021; 72:776-786. [PMID: 33678047 DOI: 10.1177/0003319721998895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platelets mediate circulating endothelial progenitor cell (EPC) recruitment and maturation, participating in vascular repair, however the underlying mechanism(s) remain unclear. We investigated the effect of platelet-rich plasma (PRP) on the functionality of CD34+-derived late-outgrowth endothelial cells (OECs) in culture. Confluent OECs were coincubated with PRP under platelet aggregation (with adenosine diphosphate; ADP) and nonaggregation conditions, in the presence/absence of the reversible P2Y12 platelet receptor antagonist ticagrelor. Outgrowth endothelial cell activation was evaluated by determining prostacyclin (PGI2) and monocyte chemoattractant protein-1 (MCP-1) release and intercellular adhesion molecule-1 (ICAM-1) membrane expression. Similar experiments were performed using human umbilical vein endothelial cells (HUVECs). Platelet-rich plasma increased ICAM-1 expression and PGI2 and MCP-1 secretion compared with autologous platelet-poor plasma, whereas ADP-aggregated platelets in PRP did not exhibit any effect. Platelet-rich plasma pretreated with ticagrelor prior to activation with ADP increased all markers to a similar extent as PRP. Similar results were obtained using HUVECs. In conclusion, PRP induces OEC activation, a phenomenon not observed when platelets are aggregated with ADP. Platelet inhibition with ticagrelor restores the PRP capability to activate OECs. Since EPC activation is important for endothelial regeneration and angiogenesis, we suggest that agents inhibiting platelet aggregation, such as ticagrelor, may promote platelet-EPC interaction and EPC function.
Collapse
Affiliation(s)
- Sofia Sidiropoulou
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Styliani Papadaki
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini N Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis K Koutsaliaris
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios G Chantzichristos
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Minas E Paschopoulos
- Department of Obstetrics and Gynecology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Platelets Boost Recruitment of CD133 + Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions. Int J Mol Sci 2020; 21:ijms21176431. [PMID: 32899390 PMCID: PMC7504029 DOI: 10.3390/ijms21176431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.
Collapse
|
5
|
Affiliation(s)
- Rocco Vergallo
- From Fondazione Policlinico Universitario A. Gemelli IRCCS (R.V., F.C.), and Università Cattolica del Sacro Cuore (F.C.) - both in Rome
| | - Filippo Crea
- From Fondazione Policlinico Universitario A. Gemelli IRCCS (R.V., F.C.), and Università Cattolica del Sacro Cuore (F.C.) - both in Rome
| |
Collapse
|
6
|
Duhme C, Lehwald N, Kehrel BE, Bauchrowitz E, Ngepi A, Schmelzle M, Kolokotronis T, Benhidjeb T, Krüger M, Jurk K, Knoefel WT, Robson SC, Schulte Am Esch J. CD133 + bone marrow stem cells (BMSC) control platelet activation - Role of ectoNTPDase-1 (CD39). Blood Cells Mol Dis 2019; 77:142-148. [PMID: 31075617 DOI: 10.1016/j.bcmd.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND We previously demonstrated CD133+ bone marrow stem cells (BMSC) to promote hepatic proliferation for liver regeneration. Here, we evaluated the capacity of CD133+BMSC to utilize platelets for homing to vasculature and concomitant controlling their aggregability upon ADP stimulation. METHODS CD133+BMSC and platelets were co-cultured along micro endothelial cells under variable flow conditions and tested for homing levels along vasculature. Aggregometry and FACS analysis were utilized to evaluate platelet reactivity following co-incubation ± CD133+BMSC. RT-PCR and FACS analyses served to characterize ADP degrading ectonucleoside triphosphate diphosphohydrolase-1 (ectoNTPDase-1/CD39) expression on various cell types. RESULTS Platelets attracted human CD133+BMSC to autologous micro endothelium under shear stress unaffected by ADP stimulation. However, CD133+BMSC inhibited ADP-mediated platelet activation and aggregation. Latter was dependent on ectoNTPDase-1 expression levels. Platelet aggregatory control was increased with CD133+BMSC compared to CD133+PHSC. Different effects of those stem cell subtypes positively correlated with their FACS-detected expression levels of ectoNTPDase-1. CONCLUSION We provide evidence that CD133+BMSC are capable of controlling ADP-dependent platelet aggregation and activation by direct interaction dependent on cellular expression of ectoNTPDase-1. Whether different capacities of BMSC modulate platelet-depending thrombogenicity at sites of regeneration impact effectiveness and adverse event profiles of regenerative treatment requires further evaluation.
Collapse
Affiliation(s)
- Constanze Duhme
- Department of Surgery A, University Hospital Duesseldorf, Germany
| | - Nadja Lehwald
- Department of Surgery A, University Hospital Duesseldorf, Germany
| | - Beate E Kehrel
- Department of Anesthesiology Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Muenster, Muenster, Germany
| | | | - Arlette Ngepi
- Department of Surgery A, University Hospital Duesseldorf, Germany
| | | | - Theodoros Kolokotronis
- Center of Visceral Medicine, Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, Bielefeld, Germany
| | - Tahar Benhidjeb
- Center of Visceral Medicine, Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, Bielefeld, Germany
| | - Martin Krüger
- Center of Visceral Medicine, Department of Gastroenterology and Internal Medicine, Protestant Hospital of Bethel Foundation, Bielefeld, Germany
| | - Kerstin Jurk
- Department of Anesthesiology Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Muenster, Muenster, Germany; Center for Thrombosis and Hemostasis, Johannes Gutenberg-University, Mainz, Germany
| | | | - Simon C Robson
- The Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Jan Schulte Am Esch
- Center of Visceral Medicine, Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, Bielefeld, Germany.
| |
Collapse
|
7
|
Alexandru N, Safciuc F, Constantin A, Nemecz M, Tanko G, Filippi A, Dragan E, Bãdilã E, Georgescu A. Platelets of Healthy Origins Promote Functional Improvement of Atherosclerotic Endothelial Progenitor Cells. Front Pharmacol 2019; 10:424. [PMID: 31068820 PMCID: PMC6491786 DOI: 10.3389/fphar.2019.00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose was to evaluate the effect of platelets on functional properties of late endothelial progenitor cells (EPCs), in the direct co-culture conditions, and to investigate the involved mediators, in experimental induced atherosclerosis. The late EPCs obtained from two animal groups, hypertensive-hyperlipidemic (HH) and control (C) hamsters, named late EPCs-HH and late EPCs-C, were co-incubated with or without platelets isolated from both groups. Our results have showed that exposure to platelets from control animals: (i) promoted the late EPCs-C capacity to form colonies and capillary-like structures, and also to proliferate and migrate; (ii) improved the functional properties of late EPCs-HH; (iii) strengthened the direct binding EPCs-platelets; (iv) increased SDF-1α,VEGF, PDGF, and reduced CD40L, IL-1β,-6,-8 levels; and (v) enhanced miR-223 and IGF-1R expressions. Platelets from HH group diminished functional abilities for both EPC types and had opposite effects on these pro-angiogenic and pro-inflammatory molecules. Furthermore, testing the direct effect of miR-223 and IGF-1R on late EPCs disclosed that these molecular factors improve late EPC functional properties in atherosclerosis in terms of stimulation of the proliferation and migration abilities. In conclusion, in vitro exposure to platelets of healthy origins had a positive effect on functional properties of atherosclerotic late EPCs. The most likely candidates mediating EPC-platelet interaction can be SDF-1α, VEGF, CD40L, PDGF, IL-1β,-6,-8, miR-223, and IGF-1R. The current study brings evidences that the presence of healthy origin platelets is of utmost importance on functional improvement of EPCs in atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Florentina Safciuc
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Elisabeta Bãdilã
- Internal Medicine Clinic, Emergency Clinical Hospital, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
8
|
Bone marrow derived endothelial progenitor cells retain their phenotype and functions after a limited number of culture passages and cryopreservation. Cytotechnology 2018; 71:1-14. [PMID: 30478806 DOI: 10.1007/s10616-018-0234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022] Open
Abstract
A critical limitation for tissue engineering and autologous therapeutic applications of bone marrow derived EPCs is their low frequency, which is even lower in number and activity level in patients with cardiovascular risk factors and other diseases. New strategies for obtaining and reserving sufficient ready-to-use EPCs for clinical use have hit major obstacles, because effects of serial passage and cryopreservation on EPC phenotype and functions are still needed to be explored. The present study aims at investigating effects of a limited number of culture passages as well as cryopreservation on EPC phenotype and functions. We isolated EPCs from rat bone marrow and cultured them up to passage 12 (totaling achievements of 40 population doublings). The phenotype and functions of fresh cultured and post-cryopreserved EPCs at passages 7 and 12, respectively, were evaluated. EPCs at passage 12 maintained the morphological characteristics, marker phenotype, Dil-ac-LDL uptake and FITC-UEA-1 binding functions, enhanced EPCs proliferation, tube formation and migration, but decreased CD133 expression compared with EPCs at passage 7. Cryopreservation caused limited impairment in EPC phenotype and functions. In brief, our results demonstrated that a limited number of culture passages and cryopreservation did not change EPC phenotype and functions, and can be used for the development of robust strategies and quality control criterion for obtaining sufficient and high-quality ready-to-use EPCs for tissue engineering and therapeutic applications.
Collapse
|
9
|
Naderi-Meshkin H, Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol 2018; 233:9167-9178. [PMID: 30105746 DOI: 10.1002/jcp.26937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
One of the major obstacles in achieving a successful stem cell therapy is insufficient homing of transplanted cells. To overcome this obstacle, understanding the underlying mechanisms of stem cell homing is of obvious importance. Central to this review is the concept that cancer metastasis can be viewed as a role model to build up a comprehensive concept of stem cell homing. In this novel perspective, the prosurvival choices of the cancerous cells in the bloodstream, their arrest, extravasation, and proliferation at the secondary site can be exploited in favor of targeted stem cell homing. To date, tumor cells have been found to employ a wide variety of strategies to promote metastasis. One of these strategies is through their ability to activate platelets and subsequently activated platelets serve cancer cell survival and metastasis. Accordingly, in the first part of this review the roles of platelets in cancer metastasis as well as stem cell homing are discussed. Next, we provide some lessons learned from cancer metastasis in favor of developing strategies for improvement of stem cell homing with emphasis on the role of platelets. Based on direct or indirect evidence from metastasis, strategies such as manipulation of stem cells to enhance interaction with platelets, preconditioning-pretreatment of stem cells with platelets in vitro, and coinjection of both stem cells and platelets are proposed to improve stem cell homing.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Naghmeh Ahmadiankia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
10
|
Abstract
This overview article for the Comprehensive Physiology collection is focused on detailing platelets, how platelets respond to various stimuli, how platelets interact with their external biochemical environment, and the role of platelets in physiological and pathological processes. Specifically, we will discuss the four major functions of platelets: activation, adhesion, aggregation, and inflammation. We will extend this discussion to include various mechanisms that can induce these functional changes and a discussion of some of the salient receptors that are responsible for platelets interacting with their external environment. We will finish with a discussion of how platelets interact with their vascular environment, with a special focus on interactions with the extracellular matrix and endothelial cells, and finally how platelets can aid and possibly initiate the progression of various vascular diseases. Throughout this overview, we will highlight both the historical investigations into the role of platelets in health and disease as well as some of the more current work. Overall, the authors aim for the readers to gain an appreciation for the complexity of platelet functions and the multifaceted role of platelets in the vascular system. © 2017 American Physiological Society. Compr Physiol 8:1117-1156, 2018.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
12
|
Ding DC, Shyu WC, Lin SZ, Li H. The Role of Endothelial Progenitor Cells in Ischemic Cerebral and Heart Diseases. Cell Transplant 2017; 16:273-84. [PMID: 17503738 DOI: 10.3727/000000007783464777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ischemic heart and cerebral diseases are complex clinical syndromes. Endothelial dysfunction caused by dysfunctional endothelial progenitor cells (EPCs) is thought to play a major role in pathophysiology of both types of disease. Healthy EPCs may be able to replace the dysfunctional endothelium through endogenous repair mechanisms. EPC levels are changed in patients with ischemic cerebrovascular and cardiovascular disease and EPCs may play a role in the pathophysiology of these diseases. EPCs are also a marker for preventive and therapeutic interventions. Homing of EPCs to ischemic sites is a mechanism of ischemic tissue repair, and molecules such as stromal-derived factor-1 and integrin may play a role in EPC homing in ischemic disease. Potentiation of the function and numbers of EPCs as well as combining EPCs with other pharmaceutical agents may improve the condition of ischemia patients. However, the precise role of EPCs in ischemic heart and cerebral disease and their therapeutic potential still remain to be explored. Here, we discuss the identification, mobilization, and clinical implications of EPCs in ischemic diseases.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Graduate Institute of Medical Science, School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | | | | | | |
Collapse
|
13
|
Shi X, Zhang W, Yin L, Chilian WM, Krieger J, Zhang P. Vascular precursor cells in tissue injury repair. Transl Res 2017; 184:77-100. [PMID: 28284670 PMCID: PMC5429880 DOI: 10.1016/j.trsl.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell-based therapy remain major challenges in the field.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Weihong Zhang
- Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Krieger
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
14
|
Strömberg A, Rullman E, Jansson E, Gustafsson T. Exercise-induced upregulation of endothelial adhesion molecules in human skeletal muscle and number of circulating cells with remodeling properties. J Appl Physiol (1985) 2017; 122:1145-1154. [PMID: 28183821 DOI: 10.1152/japplphysiol.00956.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
Multipotent cells have received great interest because of their potential capacity to repair and remodel peripheral tissues. We examined the effect of an acute exercise bout on the number of circulating cells with known remodeling properties and the level of factors in plasma and skeletal muscle tissue with potential to recruit these cells. Twenty healthy male subjects performed a 60-min cycling exercise. Blood samples for flow cytometry were drawn from 10 subjects (group 1) before and up to 2 h after exercise, and absolute cell counts of the classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocyte (MO) subpopulations and of CD45dimCD34+VEGFR2+ endothelial progenitor cells (EPCs) were measured by bead-based determination. Plasma samples and vastus lateralis muscle biopsies were obtained from the other 10 subjects (group 2). In group 1, all MO subsets were increased directly after exercise, with CD14+CD16++ MOs showing the greatest fold increase. After 2 h, only CD14++CD16- MOs were increased compared with resting levels. The number of EPCs showed a trend toward increasing with exercise (P = 0.08). In group 2, the mRNA levels of the endothelial adhesion molecules ICAM-1, VCAM-1, and E-selectin increased in the skeletal muscle tissue. VEGF-A increased in exercised skeletal muscle and stimulated the expression of VCAM-1 and E-selectin in human umbilical vein endothelial cells. In conclusion, exercise increases MO subsets with different temporal patterns and enhances the capacity of skeletal muscle tissue to recruit circulating cells as shown by increased expression of endothelial adhesion molecules.NEW & NOTEWORTHY In the present study we showed for the first time that the adhesion molecules ICAM-1, VCAM-1, and E-selectin, known to be able to recruit circulating cells to the peripheral tissue, increased in exercised human skeletal muscle concurrently with increased circulating levels of cells shown to have importance for skeletal muscle remodeling. These findings support the concept of cell recruitment from the circulation playing a role in skeletal muscle adaptation to exercise.
Collapse
Affiliation(s)
- Anna Strömberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eva Jansson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
15
|
Cointe S, Rhéaume É, Martel C, Blanc-Brude O, Dubé E, Sabatier F, Dignat-George F, Tardif JC, Bonnefoy A. Thrombospondin-1-Derived Peptide RFYVVMWK Improves the Adhesive Phenotype of CD34 + Cells From Atherosclerotic Patients With Type 2 Diabetes. Cell Transplant 2016; 26:327-337. [PMID: 27938493 DOI: 10.3727/096368916x693329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD34+ progenitor cells are growing in use for vascular repair. However, in diabetic individuals with cardiovascular diseases, these cells have dysfunctional engraftment capabilities, which compromise their use for autologous cell therapy. The thrombospondin-1-derived peptide RFYVVMWK has previously been reported to stimulate cell adhesiveness through CD47 and integrin activation pathways. Our aim was to test whether RFYVVMWK preconditioning could modulate CD34+ cell phenotype and enhance its proadhesive properties in diabetic patients. Peripheral blood mononuclear CD34+ cells isolated from 40 atherosclerotic patients with type 2 diabetes (T2D; n = 20) or without (non-T2D; n = 20) were preconditioned with 30 μM RFYVVMWK or truncated peptide RFYVVM. CD34+ cell adhesion was assessed on a vitronectin-collagen matrix and on TNF-α or IL-1β-stimulated HUVEC monolayers. Adhesion receptors, platelet/CD34+ cell conjugates, and cell viability were analyzed by flow cytometry and confocal microscopy. RFYVVMWK increased the adhesion of T2D CD34+ cells by eightfold to the vitronectin-collagen matrix (p < 0.001) corresponding to a threefold increase compared to unstimulated non-T2D CD34+ cells. The peptide induced the formation of platelet/CD34+ conjugates and increased the expression of TSP-1, CD29, CD51/CD61, and CD62P in both T2D and non-T2D cells. However, RFYVVMWK treatment did not affect the viability/apoptosis of CD34+ progenitor cells. In conclusion, priming CD34+ cells with RFYVVMWK may enhance their vascular engraftment during autologous proangiogenic cell therapy.
Collapse
|
16
|
Han JK, Kim BK, Won JY, Shin Y, Choi SB, Hwang I, Kang J, Lee HJ, Koh SJ, Lee J, Hur J, Cho HJ, Chae IH, Oh BH, Park YB, Kim HS. Interaction between platelets and endothelial progenitor cells via LPA-Edg-2 axis is augmented by PPAR-δ activation. J Mol Cell Cardiol 2016; 97:266-77. [DOI: 10.1016/j.yjmcc.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 05/05/2016] [Accepted: 06/01/2016] [Indexed: 11/26/2022]
|
17
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
18
|
Ritz U, Götz H, Baranowski A, Heid F, Rommens PM, Hofmann A. Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures. J Biomed Mater Res B Appl Biomater 2016; 105:1950-1962. [PMID: 27292649 DOI: 10.1002/jbm.b.33728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Strategies for improvement of angiogenesis and vasculogenesis using different cells and materials are paramount aims in the field of bone tissue engineering. Thereby, the interaction between different cell types and scaffold materials is crucial for growth, differentiation, and long-term outcomes of tissue-engineered constructs. In this study, we evaluated the interaction of osteoblasts and endothelial cells in three-dimensional tissue-engineered constructs using beta tricalciumphosphate (β-TCP, [ß-Ca3 (PO4 )2 ]) and calcium-deficient hydroxyapatite (CDHA, [Ca9 (PO4 )5 (HPO4 )OH]) ceramics as scaffolds. We focused on initial cell organization, cell proliferation, and differential expression of osteoblastic and endothelial markers employing monocultures and co-cultures of endothelial cells of two different origins [human umbilical vein endothelial cells (HUVECs) and outgrowth endothelial cells (OECs)] with primary human osteoblasts (hOBs). Despite different chemical and physical characteristics of CDHA and β-TCP ceramics, similar patterns in cell growth, differentiation, and gene expression were detected in tissue-engineered constructs consisting of hOB, HUVEC, and HUVEC/hOB-co-cultures. Under dynamic cell culture conditions we found proliferation of these cells with stable endothelial and osteoblastic differentiation patterns. Both material types are highly biocompatible with these cells providing a promising perspective for the future research. In this study, both materials did not support growth and differentiation of OEC. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1950-1962, 2017.
Collapse
Affiliation(s)
- Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hermann Götz
- Platform for Biomaterial Research, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Heid
- Department of Anesthesiology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Pol Maria Rommens
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
19
|
Bou Khzam L, Bouchereau O, Boulahya R, Hachem A, Zaid Y, Abou-Saleh H, Merhi Y. Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation. J Transl Med 2015; 13:353. [PMID: 26552480 PMCID: PMC4640203 DOI: 10.1186/s12967-015-0723-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. Methods EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents’ nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. Results We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)—and inducible (iNOS)—NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. Conclusion The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada. .,Department of Biochemistry, Weill Cornell Medical College in Qatar, Doha, Qatar.
| | - Olivier Bouchereau
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Rahma Boulahya
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Ahmed Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | - Younes Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada.
| | | | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, QC, H1T 1C8, Canada. .,Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Abou-Saleh H, Hachem A, Yacoub D, Gillis MA, Merhi Y. Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner. J Transl Med 2015; 13:142. [PMID: 25948279 PMCID: PMC4438565 DOI: 10.1186/s12967-015-0508-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/27/2015] [Indexed: 02/06/2023] Open
Abstract
Background The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. Methods EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel−/−) mice and their wild-type (WT) counterparts. Results EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel−/− mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel−/− mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel−/− mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel−/− mice as compared to WT mice. Conclusion This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Qatar Cardiovascular Research Center, Qatar Foundation, Education City, Doha, Qatar.
| | - Ahmed Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8, QC, Canada.
| | - Daniel Yacoub
- Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.
| | - Marc-Antoine Gillis
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8, QC, Canada.
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8, QC, Canada. .,Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
21
|
Alexandru N, Andrei E, Dragan E, Georgescu A. Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biol Cell 2015; 107:189-204. [DOI: 10.1111/boc.201400071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Nicoleta Alexandru
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Eugen Andrei
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| |
Collapse
|
22
|
Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, Liu SX, Wang H, Yang XF. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol 2015; 8:33. [PMID: 25888494 PMCID: PMC4446087 DOI: 10.1186/s13045-015-0130-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
As the population ages and lifestyles change in concordance, the number of patients suffering from ischemic stroke and its associated disabilities is increasing. Studies on determining the relationship between endothelial progenitor cells (EPCs) and ischemic stroke have become a new hot spot and have reported that EPCs may protect the brain against ischemic injury, promote neurovascular repair, and improve long-term neurobehavioral outcomes. More importantly, they introduce a new perspective for prognosis assessment and therapy of ischemic stroke. However, EPCs’ origin, function, influence factors, injury repair mechanisms, and cell-based therapy strategies remain controversial. Particularly, research conducted to date has less clinical studies than pre-clinical experiments on animals. In this review, we summarized and analyzed the current understanding of basic characteristics, influence factors, functions, therapeutic strategies, and disadvantages of EPCs as well as the regulation of inflammatory factors involved in the function and survival of EPCs after ischemic stroke. Identifying potential therapeutic effects of EPCs in ischemic stroke will be a challenging but an incredibly important breakthrough in neurology, which may bring promise for patients with ischemic stroke.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Department of Nephrology and Hemodialysis Center, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Li-Na Ren
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Geng Guo
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Lee Anne Cannella
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Valeria Chernaya
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Sonia Samuel
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Su-Xuan Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
23
|
Liang M, Wang Y, Liang A, Dong JF, Du J, Cheng J. Impaired integrin β3 delays endothelial cell regeneration and contributes to arteriovenous graft failure in mice. Arterioscler Thromb Vasc Biol 2015; 35:607-15. [PMID: 25614287 DOI: 10.1161/atvbaha.114.305089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Neointima formation is associated with stenosis and subsequent thrombosis in arteriovenous grafts (AVGs). A role of integrin β3 in the neointima formation of AVGs remains poorly understood. APPROACH AND RESULTS In integrin β3(-/-) mice, we found significantly accelerated occlusion of AVGs compared with the wild-type mice. This is caused by the development of neointima and lack of endothelial regeneration. The latter is a direct consequence of impaired functions of circulating angiogenic cells (CACs) and platelets in integrin β3(-/-) mice. Evidence suggests the involvement of platelet regulating CAC homing to and differentiation at graft sites via transforming growth factor-β1 and Notch signaling pathway. First, CACs deficient of integrin β3 impaired adhesion activity toward exposed subendothelium. Second, platelets from integrin β3(-/-) mice failed to sufficiently stimulate CACs to differentiate into mature endothelial cells. Finally, we found that transforming growth factor-β1 level was increased in platelets from integrin β3(-/-) mice and resulted in enhanced Notch1 activation in CACs in AVGs. These results demonstrate that integrin β3 is critical for endothelial cell homing and differentiation. The increased transforming growth factor-β1 and Notch1 signaling mediates integrin β3(-/-)-induced AVG occlusion. This accelerated occlusion of AVGs was reversed in integrin β3(-/-) mice transplanted with the bone marrow from wild-type mice. CONCLUSIONS Our results suggest that boosting integrin β3 function in the endothelial cells and platelets could prevent neointima and thrombosis in AVGs.
Collapse
Affiliation(s)
- Ming Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Yun Wang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Anlin Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jin-Fei Dong
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jie Du
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jizhong Cheng
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.).
| |
Collapse
|
24
|
Paniccia R, Priora R, Liotta AA, Maggini N, Abbate R. Assessment of platelet function: Laboratory and point-of-care methods. World J Transl Med 2014; 3:69-83. [DOI: 10.5528/wjtm.v3.i2.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/14/2014] [Accepted: 04/29/2014] [Indexed: 02/05/2023] Open
Abstract
In the event of blood vessel damage, human platelets are promptly recruited on the site of injury and, after their adhesion, activation and aggregation, prevent blood loss with the formation of a clot. The consequence of abnormal regulation can be either hemorrhage or the development of thrombosis. Qualitative and/or quantitative defects in platelets promote bleeding, whereas the residual reactivity of platelets, despite antiplatelet therapies, play an important role in promoting arterial thrombotic complications. Platelet function is traditionally assessed to investigate the origin of a bleeding syndrome, to predict the risk of bleeding prior surgery or during pregnancy or to monitor the efficacy of antiplatelet therapy in thrombotic syndromes that, now, can be considered a new discipline. “Old” platelet function laboratory tests such as the evaluation of bleeding time and the platelet aggregation analysis in platelet-rich plasma are traditionally utilized to aid in the diagnosis and management of patients with platelet and hemostatic disorders and used as diagnostic tools both in bleeding and thrombotic diathesis in specialized laboratories. Now, new and renewed automated systems have been introduced to provide a simple, rapid assessment of platelet function including point of care methods. These new methodologies are also suitable for being used in non-specialized laboratories and in critical area for assessing platelet function in whole blood without the requirement of sample processing. Some of these methods are also beginning to be incorporated into routine clinical use and can be utilized as not only as first panel for the diagnosis of platelet dysfunction, but also for monitoring anti-platelet therapy and to potentially assess risk of both bleeding and/or thrombosis.
Collapse
|
25
|
Raz O, Lev DL, Battler A, Lev EI. Pathways mediating the interaction between endothelial progenitor cells (EPCs) and platelets. PLoS One 2014; 9:e95156. [PMID: 24901498 PMCID: PMC4046960 DOI: 10.1371/journal.pone.0095156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Introduction Endothelial progenitor cells (EPCs) have an important role in the process of vascular injury repair. Platelets have been shown to mediate EPC recruitment, maturation and differentiation. Yet, the mechanism underlying this interaction is unclear. We, therefore, aimed to examine whether direct contact between platelets and EPCs is essential for the positive platelets-EPC effect, and to investigate the main mediators responsible for the improvement in EPCs function. Methods Human EPCs were isolated from donated buffy coats and cultured in either: 1. EPCs co-incubated with platelets placed in a 1 µm-Boyden chamber. 2. EPCs incubated with or without platelets in the presence or absence of bFGF/PDGF Receptor inhibitor (PDGFRI). After 7 days culture, EPCs ability to form colonies, proliferate and differentiate was examined. Culture supernatants were collected and growth factors levels were evaluated using ELISA. Growth factors mRNA levels in EPCs were evaluated using RT-PCR. Results and Conclusions After 7 days culture, EPCs functional properties were higher following co-incubation with platelets (directly or indirectly), implying that direct contact is not essential for the platelet’s positive effect on EPCs. This effect was reduced by PDGFRI inhibition. Additionally, higher levels of PDGFB in EPCs-platelets supernatant and higher levels of PDGFC mRNA in EPCs co-incubated with platelets were found. In contrast, FGF and other potential mediators that were examined and inhibited did not significantly affect the interaction between platelets and EPCs. Thus, we conclude that PDGF has a central role in the interaction between platelets and EPCs. Further study is required to examine additional aspects of EPC-platelets interaction.
Collapse
Affiliation(s)
- Oshrat Raz
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Dorit L. Lev
- The Felsenstein Medical Research Institute, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
| | | | - Eli I. Lev
- The Felsenstein Medical Research Institute, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Jabotinsky St, Petah- Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Abstract
Besides mediating primary hemostasis and thrombosis, platelets play a critical role in tissue repair and regeneration. They regulate fundamental mechanisms involved in the healing process including cellular migration, proliferation, and angiogenesis. Control of apoptosis/cell survival and interaction with progenitor cells, which are clinically relevant but poorly understood aspects of platelets in tissue repair, will be highlighted in this review. Gaining deeper insight into the less well-characterized molecular mechanisms is necessary to develop new therapeutic platelet-based options.
Collapse
|
27
|
Jiang L, Song XH, Liu P, Zeng CL, Huang ZS, Zhu LJ, Jiang YZ, Ouyang HW, Hu H. Platelet-mediated mesenchymal stem cells homing to the lung reduces monocrotaline-induced rat pulmonary hypertension. Cell Transplant 2013; 21:1463-75. [PMID: 22525351 DOI: 10.3727/096368912x640529] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BM-MSC) transplantation has been suggested to be a promising method for the treatment of pulmonary arterial hypertension (PAH), a fatal disease currently without effective preventive/therapeutic strategies. However, the detailed mechanisms underlying BM-MSC therapy are largely unknown. We designed the present study to test the hypothesis that circulating platelets facilitate BM-MSC homing to the lung vasculature in a rat model of PAH induced by monocrotalin (MCT). A single subcutaneous administration of MCT induced a marked rise in right ventricular systolic pressure (RVSP) and the weight ratio of right to left ventricle plus septum (RV/LV+S) 3 weeks after injection. The injection of MSCs via tail vein 3 days after MCT significantly reduced the increase of RVSP and RV/LV+S. The fluorescence-labeled MSCs injected into the PAH rat circulation were found mostly distributed in the lungs, particularly on the pulmonary vascular wall, whereas cell homing was abolished by an anti-P-selectin antibody and the GPIIb/IIIa inhibitor tirofiban. Furthermore, using an in vitro flow chamber, we demonstrated that MSC adhesion to the major extracellular matrix collagen was facilitated by platelets and their P-selectin and GPIIb/IIIa. Therefore, the current study suggested that platelet-mediated MSC homing prevented the aggravation of MCT-induced rat PAH, via P-selectin and GPIIb/IIIa-mediated mechanisms.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
A comprehensive review was performed to survey the role of angiogenesis in the pathogenesis of endometriosis. This is a multifactorial disease in which the development and maintenance of endometriotic implants depend on their invasive capacity and angiogenic potential. The peritoneal fluid of patients with endometriosis is a complex suspension carrying inflammatory cytokines, growth factors, steroid hormones, proangiogenic factors, macrophages, and endometrial and red blood cells. These cells and their signaling products concur to promote the spreading of new blood vessels at the endometriotic lesions and surroundings, which contributes to the endometriotic implant survival. Experimental studies of several antiangiogenic agents demonstrated the regression of endometriotic lesions by reducing their blood supply. Further studies are necessary before these novel agents can be introduced into clinical practice, in particular the establishment of the safety of anti-angiogenic medications in women who are seeking to become pregnant.
Collapse
|
29
|
Platelet lysate coating on scaffolds directly and indirectly enhances cell migration, improving bone and blood vessel formation. Acta Biomater 2013; 9:6630-40. [PMID: 23403167 DOI: 10.1016/j.actbio.2013.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
Suitable colonization and vascularization of tissue-engineered constructs after transplantation represent critical steps for the success of bone repair. Human platelet lysate (hPL) is composed of numerous growth factors known for their proliferative, differentiative and chemo-attractant effects on various cells involved in wound healing and bone growth. The aim of this study was to determine whether the delivery of human mesenchymal stromal cells (hMSC) seeded on hPL-coated hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) scaffolds could enhance vascularization and bone formation, as well as to investigate the mechanisms by which hMSC participate in tissue regeneration. Our study demonstrates that hPL can be coated on HA/β-TCP scaffolds, which play direct and indirect effects on implanted and/or resident stem cells. Effectively, we show that hPL coating directly increases chemo-attraction to and adhesion of hMSC and endothelial cells on the scaffold. Moreover, we show that hPL coating induces hMSC to produce and secrete pro-angiogenic proteins (placental growth factor and vascular endothelial growth factor) which allow the proliferation and specific chemo-attraction of endothelial cells in vitro, thus improving in vivo neovascularization and new bone formation. This study highlights the potential of functionalizing biomaterials with hPL and shows that this growth factor combination can have synergistic effects leading to enhanced bone and blood vessel formation.
Collapse
|
30
|
Bou Khzam L, Hachem A, Zaid Y, Boulahya R, Mourad W, Merhi Y. Soluble CD40 ligand impairs the anti-platelet function of peripheral blood angiogenic outgrowth cells via increased production of reactive oxygen species. Thromb Haemost 2013; 109:940-7. [PMID: 23426185 DOI: 10.1160/th12-09-0679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/25/2013] [Indexed: 11/05/2022]
Abstract
Adult peripheral blood angiogenic early outgrowth cells (EOCs), also known as early endothelial progenitor cells, interact with other blood and vascular cells and may regulate atherothrombosis. We have previously shown that endothelial progenitor cells inhibit platelet function and thrombus formation. The CD40L/CD40 axis is a thrombo- inflammatory mediator that affects platelet and endothelial functions. It has been shown that EOCs express CD40, whereas platelets represent the major source of its soluble ligand (sCD40L), which impairs EOC function.We aimed to test the hypothesis that the sCD40L/CD40 axis affects the anti-platelet function of EOCs. Human peripheral blood mononuclear cell-derived EOCs in culture inhibited platelet aggregation. Pre-treatment of EOCs with sCD40L reduced their inhibitory effect on platelet aggregation in a CD40-dependent manner. EOCs viability and release of the anti-aggregating agents, prostacyclin and nitric oxide, were not affected by sCD40L. However, production of reactive oxygen species (ROS) was increased in sCD40L-treated EOCs. Blockade of ROS reversed the effects of sCD40L-treated EOCs on platelet aggregation. This study reveals that the sCD40L/CD40 axis impairs the anti-platelet properties of EOCs through increased production of ROS. These data may explain the link between elevated levels of sCD40L, impaired activity of EOCs and enhanced platelet reactivity, and consequently the occurrence of atherothrombotic disease.
Collapse
Affiliation(s)
- L Bou Khzam
- Laboratory of Thrombosis and Haemostasis, Montreal Heart Institute, 5000 Belanger, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Alexandru N, Popov D, Dragan E, Andrei E, Georgescu A. Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS One 2013; 8:e52058. [PMID: 23372649 PMCID: PMC3556069 DOI: 10.1371/journal.pone.0052058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Aim The purpose of this project was to evaluate the influence of circulating endothelial progenitor cells (EPCs) and platelet microparticles (PMPs) on blood platelet function in experimental hypertension associated with hypercholesterolemia. Methods Golden Syrian hamsters were divided in six groups: (i) control, C; (ii) hypertensive-hypercholesterolemic, HH; (iii) ‘prevention’, HHin-EPCs, HH animals fed a HH diet and treated with EPCs; (iv) ‘regression’, HHfin-EPCs, HH treated with EPCs after HH feeding; (v) HH treated with PMPs, HH-PMPs, and (vi) HH treated with EPCs and PMPs, HH-EPCs-PMPs. Results Compared to HH group, the platelets from HHin-EPCs and HHfin-EPCs groups showed a reduction of: (i) activation, reflected by decreased integrin 3β, FAK, PI3K, src protein expression; (ii) secreted molecules as: SDF-1, MCP-1, RANTES, VEGF, PF4, PDGF and (iii) expression of pro-inflammatory molecules as: SDF-1, MCP-1, RANTES, IL-6, IL-1β; TFPI secretion was increased. Compared to HH group, platelets of HH-PMPs group showed increased activation, molecules release and proteins expression. Compared to HH-PMPs group the combination EPCs with PMPs treatment induced a decrease of all investigated platelet molecules, however not comparable with that recorded when EPC individual treatment was applied. Conclusion EPCs have the ability to reduce platelet activation and to modulate their pro-inflammatory and anti-thrombogenic properties in hypertension associated with hypercholesterolemia. Although, PMPs have several beneficial effects in combination with EPCs, these did not improve the EPC effects. These findings reveal a new biological role of circulating EPCs in platelet function regulation, and may contribute to understand their cross talk, and the mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Petru Poni’ Institute of Macromolecular Chemistry, Iasi, Romania
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
- * E-mail: (NA); adriana.georgescu@ icbp.ro (AG)
| | - Doina Popov
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
| | - Eugen Andrei
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
| | - Adriana Georgescu
- Petru Poni’ Institute of Macromolecular Chemistry, Iasi, Romania
- Institute of Cellular Biology and Pathology, ‘Nicolae Simionescu’ of the Romanian Academy, Bucharest, Romania
- * E-mail: (NA); adriana.georgescu@ icbp.ro (AG)
| |
Collapse
|
32
|
Tersteeg C, Roest M, Mak-Nienhuis EM, Ligtenberg E, Hoefer IE, de Groot PG, Pasterkamp G. A fibronectin-fibrinogen-tropoelastin coating reduces smooth muscle cell growth but improves endothelial cell function. J Cell Mol Med 2013; 16:2117-26. [PMID: 22225866 PMCID: PMC3822982 DOI: 10.1111/j.1582-4934.2011.01519.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reendothelialization of the stent surface after percutaneous coronary intervention (PCI) is known to be an important determinant of clinical outcome. We compared the effects of biological stent coatings, fibronectin, fibrinogen and tropoelastin, on human umbilical vein endothelial cell (HUVEC) and vascular smooth muscle cell (VSMC) characteristics. Umbilical cord arterial segments were cultured on coated surfaces and VSMC outgrowth (indicating proliferation and migration) was measured after 12 days. mRNA was isolated from HUVEC and VSMC cultured on these coatings and gene expression was profiled by QPCR. Procoagulant properties of HUVEC were determined by an indirect chromogenic assay which detects tissue factor activity. The varying stent coatings influence VSMC outgrowth: 31.2 ± 4.0 mm2 on fibronectin, 1.6 ± 0.3 mm2 on tropoelastin and 8.1 ± 1.5 mm2 on a mixture of fibronectin/fibrinogen/tropoelastin, although HUVEC migration remains unaffected. Culturing HUVEC on tropoelastin induces increased expression of VCAM-1 (13.1 ± 4.4 pg/ml), ICAM-1 (5.1 ± 1.3 pg/ml) and IL-8 (11.6 ± 3.1 pg/ml) compared to fibronectin (0.7 ± 0.2, 0.8 ± 0.2, 2.3 ± 0.5 pg/ml, respectively), although expression levels on fibronectin/fibrinogen/tropoelastin remain unaltered. No significant differences in VCAM-1, ICAM-1 and IL-8 mRNA expression are found in VSMC. Finally, HUVEC cultured on tropoelastin display a fivefold increased tissue factor activity (511.6 ± 26.7%), compared to cells cultured on fibronectin (100 ± 3.9%) or fibronectin/fibrinogen/tropoelastin (76.3 ± 25.0%). These results indicate that tropoelastin inhibits VSMC migration but leads to increased inflammatory and procoagulant markers on endothelial cells. Fibronectin/fibrinogen/tropoelastin inhibits VSMCs while compensating the inflammatory and procoagulant effects. These data suggest that coating a mixture of fibronectin/fibrinogen/tropoelastin on a stent may promote reendothelialization, while keeping unfavourable processes such as restenosis and procoagulant activity limited.
Collapse
Affiliation(s)
- Claudia Tersteeg
- Department of Experimental Cardiology, UMC Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ma XL, Sun XL, Wan CY, Ma JX, Tian P. Significance of circulating endothelial progenitor cells in patients with fracture healing process. J Orthop Res 2012; 30:1860-6. [PMID: 22528744 DOI: 10.1002/jor.22134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/29/2012] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex bone formation process, and neovascularization may contribute to new bone regeneration. The circulating endothelial progenitor cell (EPC) mobilization and homing could involve in neovascularization and vasculogenesis. In this study, we investigate the changes of circulating EPC during bone fracture healing, and the possible contribution of EPCs to increased neovascularization and fracture healing. The number of circulating EPCs was monitored in twenty-four patients with long bone traumatic fracture within the first 48 h and at 3, 5, 10, and 14 days post-fracture. The mononuclear cells which isolated from peripheral blood were analyzed by flow cytometry. Peripheral blood counts of leukocytes and platelets were measured by hematology analyzer. The amount of peripheral EPCs significantly increased in patients with fracture compared to age-matched healthy control subjects within the first 48 h after injury, and peaked at 3 days post-fracture. There was no significant difference in the change trend of early EPCs between male and female, but the number of early EPCs was significantly greater in younger patients compared to older patients. A comparison of the EPCs levels between patients with severe injury (ISS > 16) and patients with mild injury (ISS ≤ 16) revealed no statistically significant difference. The level of early EPCs was inverse correlation with the level of plate after fracture, but no correlation with the level of peripheral leucocytes. These findings suggest traumatic fracture may induce the mobilization of EPCs into the peripheral circulation. The increased EPCs may contribute to neovascularization and involve in fracture healing.
Collapse
|
34
|
Alviar CL, Tellez A, Wang M, Potts P, Smith D, Tsui M, Budzynski W, Raizner AE, Kleiman NS, Lev EI, Granada JF, Kaluza GL. Low-dose sirolimus-eluting hydroxyapatite coating on stents does not increase platelet activation and adhesion ex vivo. J Thromb Thrombolysis 2012; 34:91-8. [DOI: 10.1007/s11239-012-0696-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Leshem-Lev D, Omelchenko A, Perl L, Kornowski R, Battler A, Lev EI. Exposure to platelets promotes functional properties of endothelial progenitor cells. J Thromb Thrombolysis 2011; 30:398-403. [PMID: 20734120 DOI: 10.1007/s11239-010-0514-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent evidence indicates that endothelial progenitor cells (EPCs) have an important role in the process of repair following vascular injury, and that platelets mediate their recruitment to sites of injury. Platelets and EPCs can interact and bind directly. However, there is limited information on the effect of platelets on EPC function following this interaction. We, therefore, aimed to assess the in vitro effect of platelets on functional properties of EPCs. Human EPCs were isolated from donated Buffy coats and purified on a magnetic separation column specific for CD133. They were incubated either on fibronectin matrix, or co-incubated with washed platelets (isolated from healthy volunteers), for 7 days. Number of EPC colony forming units (CFU) was quantified, and endothelial cell lineage confirmed by immunostaining. Functional properties of the cultured cells were evaluated by MTT--proliferation assay and migration assay using the Boyden chamber. Co-incubation of EPCs with platelets compared to incubation of EPCs alone (on fibronectin matrix) resulted in higher number of CFUs after 7 days (6.5 ± 1.3 vs. 3.5 ± 0.5 CFUs/well, respectively, P = 0.005). In addition, co-incubation of EPCs with platelets versus EPCs alone was associated with higher proportion of living cells, by the MTT assay (0.2 ± 0.01 vs. 0.12 ± 0.04 MTT 570 nm respectively, P = 0.003), and higher number of migrated EPCs, assessed by the migration assay (1400 ± 212 vs. 580 ± 180 migrated cells/2000 cells, respectively, P < 0.0001). In vitro exposure to platelets promotes the capacity of EPCs to form colonies, proliferate and migrate. Therefore, the interaction with platelets appears to augment EPC functional properties.
Collapse
Affiliation(s)
- Dorit Leshem-Lev
- Cardiology Department, Rabin Medical Center, The Felsenstein Medical Research Institute and The Sackler Faculty of Medicine, Tel-Aviv University, Jabotinsky Street, Petah-Tikva 49100, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
OBJECTIVE Endothelial progenitor cells play an active role in vascular repair and revascularization of tissue damaged by traumatic, inflammatory, and ischemic injures. We correlate the changes in circulating endothelial progenitor cells with the severity of traumatic brain injury. The study is designed to investigate the endothelial progenitor cell mobilization after injury and a potential use of circulating endothelial progenitor cells as a prognostic marker for evaluating trauma severity and clinical outcomes. DESIGN A prospective cohort study conducted in two neurosurgical intensive care units of Tianjin Medical University General Hospital and Tianjin Huanhu Hospital (Tianjin, China). PATIENTS Patients with traumatic brain injury and age- and gender-matched healthy controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Changes in the levels of circulating endothelial progenitor cells were monitored for up to 21 days in 84 patients with traumatic brain injury. Results were correlated with the clinical assessment of injury severity as determined by the Glasgow Coma Scale. The level of circulating endothelial progenitor cells was found to be suppressed 24-48 hrs after injury but rapidly increased, reaching the highest at days 5-7 post-trauma. Circulating endothelial progenitor cells in patients with improved Glasgow Coma Scale scores were significantly higher than those with deteriorated conditions and remained persistently low in patients who died of trauma. CONCLUSIONS The results suggest that the level of circulating endothelial progenitor cells correlates with the clinical severity and outcome of traumatic brain injury and may offer potential as a prognostic marker for traumatic brain injury. A long-term follow-up of these patients is ongoing.
Collapse
|
37
|
Laschke M, Giebels C, Menger M. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update 2011; 17:628-636. [DOI: 10.1093/humupd/dmr023] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
38
|
Anitua E, Alkhraisat MH, Orive G. Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release 2011; 157:29-38. [PMID: 21763737 DOI: 10.1016/j.jconrel.2011.07.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/06/2011] [Indexed: 12/18/2022]
Abstract
Plasma rich in growth factors (PRGF-Endoret) is an endogenous therapeutic technology that is gaining interest in regenerative medicine due to its potential to stimulate and accelerate tissue healing and bone regeneration. This autologous biotechnology is designed for the in situ delivery of multiple cellular modulators and the formation of a fibrin scaffold, thereby providing different formulations that can be widely used in numerous medical and scientific fields including dentistry, oral implantology, orthopedics, ulcer treatment and tissue engineering among others. Here we discuss the important progress that has been accomplished in this field. Furthermore, a comprehensive outlook of the intriguing therapeutic applications of this technology is presented.
Collapse
Affiliation(s)
- Eduardo Anitua
- Private Practice in Implantology and Oral Rehabilitation in Vitoria, Spain
| | | | | |
Collapse
|
39
|
Wei HJ, Wang D, Chen JL, Xu Y, Lei P, Jiang RC, Liu L, Dong JF, Zhang JN. Mobilization of circulating endothelial progenitor cells after endovascular therapy for ruptured cerebral aneurysms. Neurosci Lett 2011; 498:114-8. [DOI: 10.1016/j.neulet.2011.04.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|
40
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2011; 129:62-81. [PMID: 20965213 PMCID: PMC3017934 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | | | - Silvia Amadesi
- Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
41
|
Endothelial progenitor cells contribute to the vascularization of endometriotic lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:442-50. [PMID: 21224081 DOI: 10.1016/j.ajpath.2010.11.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 07/26/2010] [Accepted: 09/21/2010] [Indexed: 01/20/2023]
Abstract
Endometriosis is a frequent gynecological disease that is characterized by the development of vascularized endometriotic lesions inside the peritoneal cavity. Herein, we analyzed whether circulating endothelial progenitor cells (EPCs) are recruited and incorporated into the microvasculature of these lesions. Intraperitoneal endometriotic lesions were surgically induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein [GFP]) 287 Sato mice. Vascularization and recruitment of GFP-positive EPCs in the lesions was analyzed by intravital fluorescence microscopy and immunohistochemistry over 4 weeks. The numbers of stem cell antigen-1 (Sca-1)/vascular endothelial growth factor receptor-2-positive EPCs in blood and hematopoietic organs of additional endometriotic and control mice were assessed by flow cytometry. We found that approximately 15% of the microvascular endothelium in engrafting endometriotic lesions consisted of incorporated GFP-positive EPCs. Recruitment of EPCs into the lesions coincided with the establishment of own blood supply and the expression of stromal cell-derived factor-1. Accordingly, treatment with the stromal cell-derived factor-1/chemokine receptor type 4 axis antagonist AMD3100 significantly decreased the number of recruited EPCs and the vascularization of endometriotic lesions. However, endometriosis did not induce increased levels of EPCs in the blood, bone marrow, and spleen of C57BL/6 mice. To our knowledge, our findings indicate for the first time that vasculogenesis (ie, de novo generation of blood vessels from EPCs) may represent an integral mechanism in the pathogenesis of endometriosis.
Collapse
|
42
|
Smid J, Braun-Dullaeus R, Gawaz M, Langer HF. Platelet interactions as therapeutic targets for prevention of atherothrombosis. Future Cardiol 2010; 5:285-96. [PMID: 19450054 DOI: 10.2217/fca.09.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Physiologically, platelets perform important tasks to maintain the homeostasis of the vascular wall and the surrounding environment. In pathologic conditions, however, platelets contribute to the formation of atherosclerotic plaques as well as to atherothrombotic events (i.e., acute myocardial infarction). This review aims to elucidate the role of platelets in atherogenesis and atherothrombosis and to provide an insight into current and future strategies for platelet inhibition.
Collapse
Affiliation(s)
- Jan Smid
- Universitätsklinik für Kardiologie, Angiologie & Pneumologie, Universitätsklinikum Magdeburg, Leipziger Strasse 44, Magdeburg 39120, Germany.
| | | | | | | |
Collapse
|
43
|
Lev EI, Leshem-Lev D, Mager A, Vaknin-Assa H, Harel N, Zimra Y, Bental T, Greenberg G, Dvir D, Solodky A, Assali A, Battler A, Kornowski R. Circulating endothelial progenitor cell levels and function in patients who experienced late coronary stent thrombosis. Eur Heart J 2010; 31:2625-32. [DOI: 10.1093/eurheartj/ehq184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
44
|
Bai X, Wang X, Xu Q. Endothelial damage and stem cell repair in atherosclerosis. Vascul Pharmacol 2010; 52:224-9. [DOI: 10.1016/j.vph.2010.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/27/2010] [Accepted: 02/09/2010] [Indexed: 11/24/2022]
|
45
|
Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization — A review of current strategies. Biotechnol Adv 2010; 28:119-29. [DOI: 10.1016/j.biotechadv.2009.10.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/20/2022]
|
46
|
Abou-Saleh H, Yacoub D, Théorêt JF, Gillis MA, Neagoe PE, Labarthe B, Théroux P, Sirois MG, Tabrizian M, Thorin E, Merhi Y. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation. Circulation 2009; 120:2230-9. [PMID: 19917882 DOI: 10.1161/circulationaha.109.894642] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. METHODS AND RESULTS Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. CONCLUSIONS Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Research Center, Montreal Heart Institute and Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada, H1T 1C8
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Granada JF, Alviar CL, Wallace-Bradley D, Osteen M, Dave B, Tellez A, Win HK, Kleiman NS, Kaluza GL, Lev EI. Patterns of activation and deposition of platelets exposed to the polymeric surface of the paclitaxel eluting stent. J Thromb Thrombolysis 2009; 29:60-9. [DOI: 10.1007/s11239-009-0348-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Langer HF, Stellos K, Steingen C, Froihofer A, Schönberger T, Krämer B, Bigalke B, May AE, Seizer P, Müller I, Gieseke F, Siegel-Axel D, Meuth SG, Schmidt A, Wendel HP, Müller I, Bloch W, Gawaz M. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro. J Mol Cell Cardiol 2009; 47:315-25. [PMID: 19328809 DOI: 10.1016/j.yjmcc.2009.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/15/2009] [Indexed: 12/29/2022]
Abstract
Patients with myocardial infarction reveal an altered number of circulating mesenchymal stem cells (MSCs). Recently, it was shown that MSCs are able to regenerate myocardial tissue and to differentiate into endothelial cells. The homing mechanisms of MSCs from the circulation into the target tissue, however, are not understood so far. In this study, we evaluated the impact of platelets on MSC recruitment, proliferation, migration and integration into the endothelium. MSCs expressing alpha(v)beta(3) integrin were recruited to human arterial endothelial cells exposed to isolated platelets or IL-1 beta under high shear conditions. Furthermore, induction of vascular injury in vivo resulted in increased recruitment of injected MSCs as assessed by intravital microscopy and depletion of platelets significantly reduced this adhesion. The interaction of platelets and MSCs was inhibited by pre-incubation with the mAb 7E3 or an RGD protein both blocking beta(3) integrin mediated adhesion. Platelets had a chemotactic effect on MSCs, promoted a migratory MSC phenotype and dose- and activation-dependently enhanced migration of MSCs, a process, which was mediated by basic fibroblast growth factor (bFGF). Similarly, platelet derived bFGF increased proliferation of MSCs. Coincubation of MSCs with platelets facilitated integration into an endothelial monolayer, which was significantly reduced by pre-incubation with a blocking mAb to bFGF. We conclude that platelets may play a critical part in the recruitment of MSCs to the endothelium, influence MSC function and promote integration of MSCs into the endothelium.
Collapse
Affiliation(s)
- Harald F Langer
- Medizinische Klinik III, Department of Cardiovascular Medicine, Eberhard Karls Universität Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 2008; 9:2969-79. [PMID: 18831592 DOI: 10.1021/bm800681k] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The higher patency rates of cardiovascular implants, including vascular bypass grafts, stents, and heart valves are related to their ability to inhibit thrombosis, intimal hyperplasia, and calcification. In native tissue, the endothelium plays a major role in inhibiting these processes. Various bioengineering research strategies thereby aspire to induce endothelialization of graft surfaces either prior to implantation or by accelerating in situ graft endothelialization. This article reviews potential bioresponsive molecular components that can be incorporated into (and/or released from) biomaterial surfaces to obtain accelerated in situ endothelialization of vascular grafts. These molecules could promote in situ endothelialization by the mobilization of endothelial progenitor cells (EPC) from the bone marrow, encouraging cell-specific adhesion (endothelial cells (EC) and/or EPC) to the graft and, once attached, by controlling the proliferation and differentiation of these cells. EC and EPC interactions with the extracellular matrix continue to be a principal source of inspiration for material biofunctionalization, and therefore, the latest developments in understanding these interactions will be discussed.
Collapse
Affiliation(s)
- Achala de Mel
- Centre of Nanotechnology, Biomaterials and Tissue Engineering, UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
50
|
Garg R, Tellez A, Alviar C, Granada J, Kleiman NS, Lev EI. The effect of percutaneous coronary intervention on inflammatory response and endothelial progenitor cell recruitment. Catheter Cardiovasc Interv 2008; 72:205-9. [PMID: 18651648 DOI: 10.1002/ccd.21611] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vascular interventions, such as percutaneous coronary interventions (PCI), lead to endothelial damage and cause an inflammatory response. Endothelial progenitor cells (EPC) have been shown to have a prominent role in re-endothelialization and repair following vascular injury. Studies have implicated a role for the chemokine, stromal-cell-derived factor-1 alpha (SDF1-alpha) in the recruitment of circulating EPCs to sites of vascular injury. However, the relationship between the inflammatory response, SDF1-alpha, and EPC levels after PCI is unclear. METHODS We enrolled one hundred patients (mean age 65.5 +/- 10.9 years, 32% females)--20 patients with NSTEMI, 27 patients with unstable angina, and 53 patients with stable angina who underwent PCI with stenting. EPC levels were measured by quantifying colony forming units in the 20 NSTEMI patients, whereas SDF1-alpha levels and hs-CRP levels were measured in all 100 patients by enzyme-linked immunosorbent assay. All three markers were measured in blood samples drawn before and 24 hr after PCI. RESULTS EPC colonies increased from 9.6 colonies per million cells before PCI to 13.2 colonies per million cells after PCI (37% increase, P = 0.03). Circulating SDF1-alpha levels increased mildly from 1707.1 +/- 480 pg/mL at baseline to 1758.6 +/- 501 pg/mL after PCI (3% increase, P = 0.0425). There was a 95% increase in the levels of hs-CRP (pre-PCI: 4.5 +/- 5.3 mg/L vs. post-PCI: 8.8 +/- 9.5 mg/L; P = 0.0004). CONCLUSIONS A robust rise in hs-CRP levels in our study suggests that PCI induced a potent inflammatory response. This combined with a proportional increase in the levels of EPCs and mild elevation in SDF1-alpha after PCI suggests the possibility that the potent inflammatory response induced by PCI may be associated with EPC recruitment.
Collapse
Affiliation(s)
- Rajeev Garg
- Division of Cardiology, University of Missouri, Columbia, Missouri 65202, USA.
| | | | | | | | | | | |
Collapse
|