1
|
Sun F, Deng X, Gao H, Ding L, Zhu W, Luo H, Ye X, Luo X, Chen Z, Qin C. Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Acinetobacter baumannii Exotoxin Protein F6W77. Toxins (Basel) 2024; 16:450. [PMID: 39453226 PMCID: PMC11511053 DOI: 10.3390/toxins16100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests that bacterial exotoxins might be a new source of anticoagulants. In this study, we analyzed the genomic sequences of Acinetobacter baumannii and a new bacterial exotoxin protein, F6W77, with five Kunitz-domains, KABP1-5, was identified. Each Kunitz-type domain features a classical six-cysteine framework reticulated by three conserved disulfide bridges, which was obviously similar to animal Kunitz-domain peptides but different from plant Kunitz-domain peptides. Anticoagulation function evaluation showed that towards the intrinsic coagulation pathway, KABP1 and KABP5 had apparently inhibitory activity, KABP4 had weak inhibitory activity, and KBAP2 and KABP3 had no effect even at a high concentration of 20 μg/mL. All five Kunitz-domain peptides, KABP1-5, had no inhibitory activity towards the extrinsic coagulation pathway. Enzyme-inhibitor experiments showed that the high-activity anticoagulant peptide KABP1 had apparently inhibitory activity towards two key coagulation factors, Xa and XIa, which was further confirmed by pull-down experiments that showed that KABP1 can bind to coagulation factors Xa and XIa directly. Structure-function relationship analyses of five Kunitz-type domain peptides showed that the arginine of the P1 site of three new bacterial anticoagulants, KABP1, KABP4 and KABP5, might be the key residue for their anticoagulation activity. In conclusion, with bioinformatics analyses, peptide recombination, and functional evaluation, we firstly found bacterial-exotoxin-derived Kunitz-type serine protease inhibitors with selectively inhibiting activity towards intrinsic coagulation pathways, and highlighted a new interaction between pathogenic bacteria and the human coagulation system.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaolin Deng
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huanhuan Gao
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
2
|
Houck KL, Yuan H, Tian Y, Solomon M, Cramer D, Liu K, Zhou Z, Wu X, Zhang J, Oehler V, Dong JF. Physical proximity and functional cooperation of glycoprotein 130 and glycoprotein VI in platelet membrane lipid rafts. J Thromb Haemost 2019; 17:1500-1510. [PMID: 31145836 DOI: 10.1111/jth.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Clinical and laboratory studies have demonstrated that platelets become hyperactive and prothrombotic in conditions of inflammation. We have previously shown that the proinflammatory cytokine interleukin (IL)-6 forms a complex with soluble IL-6 receptor α (sIL-6Rα) to prime platelets for activation by subthreshold concentrations of collagen. Upon being stimulated with collagen, the transcription factor signal transducer and activator of transcription (STAT) 3 in platelets is phosphorylated and dimerized to act as a protein scaffold to facilitate the catalytic action between the kinase Syk and the substrate phospholipase Cγ2 (PLCγ2) in collagen-induced signaling. However, it remains unknown how collagen induces phosphorylation and dimerization of STAT3. METHODS AND RESULTS We conducted complementary in vitro experiments to show that the IL-6 receptor subunit glycoprotein 130 (GP130) was in physical proximity to the collagen receptor glycoprotein VI (GPVI in membrane lipid rafts of platelets. This proximity allows collagen to induce STAT3 activation and dimerization, and the IL-6-sIL-6Rα complex to activate the kinase Syk and the substrate PLCγ2 in the GPVI signal pathway, resulting in an enhanced platelet response to collagen. Disrupting lipid rafts or blocking GP130-Janus tyrosine kinase (JAK)-STAT3 signaling abolished the cross-activation and reduced platelet reactivity to collagen. CONCLUSION These results demonstrate cross-talk between collagen and IL-6 signal pathways. This cross-talk could potentially provide a novel mechanism for inflammation-induced platelet hyperactivity, so the IL-6-GP130-JAK-STAT3 pathway has been identified as a potential target to block this hyperactivity.
Collapse
Affiliation(s)
| | - Hengjie Yuan
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | | | - Drake Cramer
- Bloodworks Research Institute, Seattle, Washington
| | - Kitty Liu
- Bloodworks Research Institute, Seattle, Washington
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
| | - Xiaoping Wu
- Bloodworks Research Institute, Seattle, Washington
| | - Jianning Zhang
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Vivian Oehler
- Clinical Research Division, Hutchison Cancer Center, Seattle, Washington
- Seattle Cancer Alliances, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Lukomski S, Bachert BA, Squeglia F, Berisio R. Collagen-like proteins of pathogenic streptococci. Mol Microbiol 2017; 103:919-930. [PMID: 27997716 DOI: 10.1111/mmi.13604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| |
Collapse
|
4
|
Plug T, Meijers JCM. Structure-function relationships in thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2016; 14:633-44. [PMID: 26786060 DOI: 10.1111/jth.13261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/30/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance of coagulation and fibrinolysis. TAFI is a metallocarboxypeptidase that circulates in plasma as zymogen. Activated TAFI (TAFIa) cleaves C-terminal lysine or arginine residues from peptide substrates. The removal of C-terminal lysine residues from partially degraded fibrin leads to reduced plasmin formation and thus attenuation of fibrinolysis. TAFI also plays a role in inflammatory processes via the removal of C-terminal arginine or lysine residues from bradykinin, thrombin-cleaved osteopontin, C3a, C5a and chemerin. TAFI has been studied extensively over the past three decades and recent publications provide a wealth of information, including crystal structures, mutants and structural data obtained with antibodies and peptides. In this review, we combined and compared available data on structure/function relationships of TAFI.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Plug T, Marquart JA, Marx PF, Meijers JCM. Selective modulation of thrombin-activatable fibrinolysis inhibitor (TAFI) activation by thrombin or the thrombin-thrombomodulin complex using TAFI-derived peptides. J Thromb Haemost 2015; 13:2093-101. [PMID: 26341360 DOI: 10.1111/jth.13133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a risk factor for coronary heart disease. TAFI is proteolytically activated by thrombin, the thrombin-thrombomodulin complex and plasmin. Once active, it dampens fibrinolysis and inflammation. The aim of this study was to generate TAFI-derived peptides that specifically modulate TAFI activation and activity. METHODS Thirty-four overlapping TAFI peptides, and modifications thereof, were synthesized. The effects of these peptides on TAFI activation and TAFIa activity were determined. In addition, the binding of the peptides to thrombin were determined. RESULTS Four peptides (peptides 2, 18, 19 and 34) inhibited TAFI activation and two peptides (peptides 14 and 24) inhibited TAFIa activity directly. Peptide 2 (Arg12-Glu28) and peptide 34 (Cys383-Val401) inhibited TAFI activation by the thrombin-thrombomodulin complex with IC50 values of 7.3 ± 1.8 and 6.1 ± 0.9 μm, respectively. However, no inhibition was observed in the absence of thrombomodulin. This suggests that the regions Arg12-Glu28 and Cys383-Val401 in TAFI are involved in thrombomodulin-mediated TAFI activation. Peptide 18 (Gly205-Ser221) and peptide 19 (Arg214-Asp232) inhibited TAFI activation by thrombin and the thrombin-thrombomodulin complex. Furthermore, these peptides bound to thrombin (KD : 1.5 ± 0.4 and 0.52 ± 0.07 μm for peptides 18 and 19, respectively), suggesting that Gly205-Asp232 of TAFI is involved in binding to thrombin. Peptide 14 (His159-His175) inhibited TAFIa activity. The inhibition was TAFIa specific, because no effect on the homologous enzyme carboxypeptidase B was observed. CONCLUSIONS Thrombin-activatable fibrinolysis inhibitor-derived peptides show promise as new tools to modulate TAFI activation and TAFIa activity. Furthermore, these peptides revealed potential binding sites on TAFI for thrombin and the thrombin-thrombomodulin complex.
Collapse
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J A Marquart
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - P F Marx
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014; 186:451-61. [DOI: 10.1016/j.jsb.2014.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
7
|
Shantsila E, Montoro-García S, Tapp LD, Apostolakis S, Wrigley BJ, Lip GYH. Fibrinolytic status in acute coronary syndromes: evidence of differences in relation to clinical features and pathophysiological pathways. Thromb Haemost 2012; 108:32-40. [PMID: 22538774 DOI: 10.1160/th12-01-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/24/2012] [Indexed: 01/20/2023]
Abstract
Limited data are available on the role of innate fibrinolysis in acute coronary syndromes (ACS). In the present study we evaluated the dynamic alterations of fibrinolytic markers in patients presenting with ACS. Tissue-type-(tPA) and urokinase type-(uPA) plasminogen activators, plasminogen activator inhibitor (PAI-1) antigen and activity and thrombin activatable fibrinolysis inhibitor (TAFI) were analysed in 50 patients with ST elevation myocardial infarction (STEMI), 47 non-STEMI patients (NSTEMI), 40 patients with stable coronary artery disease (CAD) and 39 controls. The parameters were measured on day 1 and days 3, 7 and 30. Counts of monocyte subsets, monocyte-platelet aggregates and plasma inflammatory cytokines were assessed on admission. On day 1, TAFI was higher in NSTEMI vs. STEMI (p<0.001) while PAI-1 activity was higher in STEMI (p<0.001). In STEMI, uPA activity levels was low on day 1 but significantly increased on day 30 (p<0.001). TAFI levels were increased in NSTEMI on day 1 and gradually reduced by day 30 (p<0.05). In STEMI, TAFI levels peaked at day 7 (p<0.05) and dropped significantly by day 30 (p<0.05). CD14++CD16+ monocytes were independently associated with PAI-1 activity in ACS (p=0.03). Monocyte-platelet aggregates rather than platelet-free monocytes were an independent determinant of tPA, PAI-1 antigen and TAFI on a multivariate analysis (p<0.05). There are significant differences in fibrinolytic activity between patients with STEMI and NSTEMI. These changes could reflect the role of these factors in post-MI myocardial healing. Monocyte-platelet interactions are independently associated with the regulation of the fibrinolytic status in ACS.
Collapse
Affiliation(s)
- Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | | | | | | | | | | |
Collapse
|