1
|
Karan V, Vyas D, Bohra V, Huded V. Ticagrelor Use in Indian Patients Undergoing Neuroendovascular Procedures: A Single Center Experience. Neurointervention 2019; 14:125-130. [PMID: 31387163 PMCID: PMC6736500 DOI: 10.5469/neuroint.2019.00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE A safe and efficacious antiplatelet drug is needed for patients with clopidogrel resistance who undergo neuroendovascular procedures. Ticagrelor is a new reversibly binding, oral, direct-acting P2Y receptor antagonist with no known resistance. We describe our clinical experience using ticagrelor for neuroendovascular procedures in Indian patients with clopidogrel resistance at the NH Institute of Neurosciences, Narayana Health City, Bangalore. MATERIALS AND METHODS We retrospectively reviewed our endovascular procedure database for all patients with predefined clopidogrel resistance. Clopidogrel resistance was defined as P2Y12 inhibition <40%. Patients were administered ticagrelor along with aspirin prior to the procedure. RESULTS Of 127 patients, 32 (25%) were non-responders to clopidogrel (22 [69%] males, 10 [31%] females; median age, 54 years [range, 20-75]). All patients were treated with a 180-mg loading dose of ticagrelor, followed by 90 mg twice daily. Twenty patients (63%) underwent endovascular intervention for intracranial aneurysm, two (6%) for dissecting aneurysms, nine (28%) for stenotic lesions, and one (3%) for carotico-cavernous fistula. No patient experienced any adverse effects related to the use of Ticagrelor in the postoperative period. CONCLUSION Ticagrelor is an effective alternative to clopidogrel for use in conjunction with aspirin in patients with clopidogrel resistance. None of our patients had adverse effects from ticagrelor. Drug cost, twice-daily dosing, and risk of faster platelet aggregation activation after discontinuation should be taken into consideration prior to its use in such patients.
Collapse
Affiliation(s)
- Vivek Karan
- Division of Stroke and Interventional Neurology, NH Institute of Neurosciences, Bangalore, India
| | - Devashish Vyas
- Division of Stroke and Interventional Neurology, NH Institute of Neurosciences, Bangalore, India
| | - Vikram Bohra
- Division of Stroke and Interventional Neurology, NH Institute of Neurosciences, Bangalore, India
| | - Vikram Huded
- Division of Stroke and Interventional Neurology, NH Institute of Neurosciences, Bangalore, India
| |
Collapse
|
2
|
Chyrchel B, Drożdż A, Długosz D, Stępień EŁ, Surdacki A. Platelet Reactivity And Circulating Platelet-Derived Microvesicles Are Differently Affected By P2Y 12 Receptor Antagonists. Int J Med Sci 2019; 16:264-275. [PMID: 30745807 PMCID: PMC6367525 DOI: 10.7150/ijms.28580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Platelet-derived microvesicles (PMVs), shed from platelet surface membranes, constitute the majority of circulating microvesicles and have been implicated in procoagulant, pro-inflammatory and pro-atherosclerotic effects. Our aim was to compare plasma PMVs numbers in relation to platelet reactivity during dual antiplatelet therapy (DAPT) with various P2Y12 adenosine diphosphate (ADP) receptor antagonists. Methods: In pre-discharge men treated with DAPT for an acute coronary syndrome, plasma PMVs were quantified by flow cytometry on the basis of CD62P (P-selectin) and CD42 (glycoprotein Ib) positivity, putative indices of PMVs release from activated and all platelets, respectively. ADP-induced platelet aggregation was measured by multiple-electrode aggregometry. Results: Clinical characteristics were similar in patients on clopidogrel (n=16), prasugrel (n=10) and ticagrelor (n=12). Platelet reactivity was comparably reduced on ticagrelor or prasugrel versus clopidogrel (p<0.01). Compared to clopidogrel-treated patients, CD42+/CD62P+ PMVs counts were 3-4-fold lower in subjects receiving ticagrelor (p=0.001) or prasugrel (p<0.05), while CD42+ PMVs were significantly reduced on ticagrelor (by about 6-fold, p<0.001), but not prasugrel (p=0.3). CD42+/CD62P+ PMVs numbers correlated positively to the ADP-induced aggregation on clopidogrel (p<0.01) or prasugrel (p<0.05), which was absent in ticagrelor users (p=0.8). CD42+ PMVs counts were unrelated to platelet reactivity (p>0.5). Conclusions: Higher antiplatelet potency of prasugrel and ticagrelor versus clopidogrel is associated with decreased plasma CD42+/CD62P+ PMVs numbers. However, in contrast to thienopyridines, the association of reduced CD42+/CD62P+ PMVs counts with ticagrelor use appears independent of its anti-aggregatory effect. Despite similar platelet-inhibitory activity of ticagrelor and prasugrel, only the treatment with ticagrelor seems associated with lower total PMVs release. Our preliminary findings may suggest a novel pleiotropic effect of ticagrelor extending beyond pure anti-aggregatory properties of the drug.
Collapse
Affiliation(s)
- Bernadeta Chyrchel
- Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Drożdż
- Małopolska Center of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Dorota Długosz
- Students' Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| | - Ewa Ł Stępień
- Department of Medical Physics, Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Cracow, Poland
| | - Andrzej Surdacki
- Second Department of Cardiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
3
|
Armstrong PC, Hoefer T, Knowles RB, Tucker AT, Hayman MA, Ferreira PM, Chan MV, Warner TD. Newly Formed Reticulated Platelets Undermine Pharmacokinetically Short-Lived Antiplatelet Therapies. Arterioscler Thromb Vasc Biol 2017; 37:949-956. [PMID: 28279968 PMCID: PMC5405774 DOI: 10.1161/atvbaha.116.308763] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 01/24/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Aspirin together with thienopyridine P2Y12 inhibitors, commonly clopidogrel, is a cornerstone of antiplatelet therapy. However, many patients receiving this therapy display high on-treatment platelet reactivity, which is a major therapeutic hurdle to the prevention of recurrent thrombotic events. The emergence of uninhibited platelets after thrombopoiesis has been proposed as a contributing factor to high on-treatment platelet reactivity. Here, we investigate the influences of platelet turnover on platelet aggregation in the face of different dual-antiplatelet therapy strategies. Approach and Results— Traditional light transmission aggregometry, cytometry, advanced flow cytometric imaging, and confocal microscopy were used to follow the interactions of populations of platelets from healthy volunteers and patients with stable cardiovascular disease. Newly formed, reticulated platelets overproportionately contributed to, and clustered at, the core of forming aggregates. This phenomenon was particularly observed in samples from patients treated with aspirin plus a thienopyridine, but was absent in samples taken from patients treated with aspirin plus ticagrelor. Conclusions— Reticulated platelets are more reactive than older platelets and act as seeds for the formation of platelet aggregates even in the presence of antiplatelet therapy. This is coherent with the emergence of an uninhibited subpopulation of reticulated platelets during treatment with aspirin plus thienopyridine, explained by the short pharmacokinetic half-lives of these drugs. This phenomenon is absent during treatment with ticagrelor, because of its longer half-life and ability to act as a circulating inhibitor. These data highlight the important influences of pharmacokinetics on antiplatelet drug efficacies, especially in diseases associated with increased platelet turnover.
Collapse
Affiliation(s)
- Paul C Armstrong
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| | - Thomas Hoefer
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Rebecca B Knowles
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Arthur T Tucker
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Melissa A Hayman
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Plinio M Ferreira
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Melissa V Chan
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Timothy D Warner
- From The William Harvey Research Institute, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|
4
|
Abstract
OBJECTIVE Because coronary artery bypass graft (CABG) surgery is associated with a high turnover of platelets, assessment of platelet function should enable assessment of the effect of young (RNA-containing) platelets on platelet reactivity. This study was designed to assess platelet reactivity 1 day after CABG in patients treated previously with clopidogrel or ticagrelor. METHODS Patients (n=18) with acute coronary syndrome who required urgent CABG and had been treated for up to 2 days before surgery with aspirin plus clopidogrel (n=13) or aspirin plus ticagrelor (n=5) were enrolled. Care was not altered by participation, which entailed review of medical records and taking one sample of blood 1 day after surgery. The percentage of RNA-containing platelets was quantified using thiazole orange, and platelet function was assessed by flow cytometry. RESULTS Young platelets constituted, on average, 24% of platelets (range 4-54%) and were more likely to be activated in the absence or presence of an agonist (P<0.001). Differences between RNA-containing (young) and non-RNA-containing platelets were evident in patients treated previously with clopidogrel (P<0.001), whereas a nonsignificant trend was apparent in patients treated previously with ticagrelor. A high but variable prevalence of young platelets was seen 1 day after CABG. CONCLUSION Young platelets were more reactive and, consistent with the irreversible binding of clopidogrel to P2Y12, this effect was more pronounced after treatment with clopidogrel. The reversible binding of ticagrelor to the platelet P2Y12 receptor may be advantageous in patients with a high platelet turnover.
Collapse
|
5
|
Nylander S, Schulz R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br J Pharmacol 2016; 173:1163-78. [PMID: 26758983 PMCID: PMC5341337 DOI: 10.1111/bph.13429] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023] Open
Abstract
The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea.
Collapse
Affiliation(s)
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| |
Collapse
|
6
|
Abstract
Despite advancements in treatments for acute coronary syndromes over the last 10 years, they continue to be life-threatening disorders. Currently, the standard of treatment includes dual antiplatelet therapy consisting of aspirin plus a P2Y12 receptor antagonist. The thienopyridine class of P2Y12 receptor antagonists, clopidogrel and prasugrel, have demonstrated efficacy. However, their use is associated with several limitations, including the need for metabolic activation and irreversible P2Y12 receptor binding causing prolonged recovery of platelet function. In addition, response to clopidogrel is variable and efficacy is reduced in patients with certain genotypes. Although prasugrel is a more consistent inhibitor of platelet aggregation than clopidogrel, it is associated with an increased risk of life-threatening and fatal bleeding. Ticagrelor is an oral antiplatelet agent of the cyclopentyltriazolopyrimidine class and also acts through the P2Y12 receptor. In contrast to clopidogrel and prasugrel, ticagrelor does not require metabolic activation and binds rapidly and reversibly to the P2Y12 receptor. In light of new data, this review provides an update on the pharmacokinetic, pharmacodynamic and pharmacogenetic profiles of ticagrelor in different study populations. Recent studies report that no dose adjustment for ticagrelor is required on the basis of age, gender, ethnicity, severe renal impairment or mild hepatic impairment. The non-P2Y12 actions of ticagrelor are reviewed, showing indirect positive effects on cellular adenosine concentration and biological activity, by inhibition of equilibrative nucleoside transporter-1 independently of the P2Y12 receptor. CYP2C19 and ABCB1 genotypes do not appear to influence ticagrelor pharmacodynamics. A summary of drug interactions is also presented.
Collapse
|
7
|
Hoefer T, Armstrong PC, Finsterbusch M, Chan MV, Kirkby NS, Warner TD. Drug-Free Platelets Can Act as Seeds for Aggregate Formation During Antiplatelet Therapy. Arterioscler Thromb Vasc Biol 2015; 35:2122-33. [PMID: 26272940 PMCID: PMC4587545 DOI: 10.1161/atvbaha.115.306219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/30/2015] [Indexed: 12/27/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Reduced antiplatelet drug efficacy occurs in conditions of increased platelet turnover, associated with increased proportions of drug-free, that is, uninhibited, platelets. Here, we detail mechanisms by which drug-free platelets promote platelet aggregation in the face of standard antiplatelet therapy. Approach and Results— To model standard antiplatelet therapy, platelets were treated in vitro with aspirin, the P2Y12 receptor blocker prasugrel active metabolite, or aspirin plus prasugrel active metabolite. Different proportions of uninhibited platelets were then introduced. Light transmission aggregometry analysis demonstrated clear positive associations between proportions of drug-free platelets and percentage platelet aggregation in response to a range of platelet agonists. Using differential platelet labeling coupled with advanced flow cytometry and confocal imaging we found aggregates formed in mixtures of aspirin-inhibited platelets together with drug-free platelets were characterized by intermingled platelet populations. This distribution is in accordance with the ability of drug-free platelets to generate thromboxane A2 and so drive secondary platelet activation. Conversely, aggregates formed in mixtures of prasugrel active metabolite–inhibited or aspirin plus prasugrel active metabolite–inhibited platelets together with drug-free platelets were characterized by distinct cores of drug-free platelets. This distribution is consistent with the ability of drug-free platelets to respond to the secondary activator ADP. Conclusions— These experiments are the first to image the interactions of inhibited and uninhibited platelets in the formation of platelet aggregates. They demonstrate that a general population of platelets can contain subpopulations that respond strikingly differently to overall stimulation of the population and so act as the seed for platelet aggregation.
Collapse
Affiliation(s)
- Thomas Hoefer
- From The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (T.H., P.C.A., M.F., M.V.C., T.D.W.); and National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.S.K.)
| | - Paul C Armstrong
- From The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (T.H., P.C.A., M.F., M.V.C., T.D.W.); and National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.S.K.)
| | - Michaela Finsterbusch
- From The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (T.H., P.C.A., M.F., M.V.C., T.D.W.); and National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.S.K.)
| | - Melissa V Chan
- From The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (T.H., P.C.A., M.F., M.V.C., T.D.W.); and National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.S.K.)
| | - Nicholas S Kirkby
- From The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (T.H., P.C.A., M.F., M.V.C., T.D.W.); and National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.S.K.)
| | - Timothy D Warner
- From The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (T.H., P.C.A., M.F., M.V.C., T.D.W.); and National Heart and Lung Institute, Imperial College London, London, United Kingdom (N.S.K.).
| |
Collapse
|
8
|
Bernlochner I, Goedel A, Plischke C, Schüpke S, Haller B, Schulz C, Mayer K, Morath T, Braun S, Schunkert H, Siess W, Kastrati A, Laugwitz KL. Impact of immature platelets on platelet response to ticagrelor and prasugrel in patients with acute coronary syndrome. Eur Heart J 2015. [DOI: 10.1093/eurheartj/ehv326] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
9
|
Baaten CCFMJ, Veenstra LF, Wetzels R, van Geffen JP, Swieringa F, de Witt SM, Henskens YMC, Crijns H, Nylander S, van Giezen JJJ, Heemskerk JWM, van der Meijden PEJ. Gradual increase in thrombogenicity of juvenile platelets formed upon offset of prasugrel medication. Haematologica 2015; 100:1131-8. [PMID: 26113418 DOI: 10.3324/haematol.2014.122457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/22/2015] [Indexed: 12/14/2022] Open
Abstract
In patients with acute coronary syndrome, dual antiplatelet therapy with aspirin and a P2Y12 inhibitor like prasugrel is prescribed for one year. Here, we investigated how the hemostatic function of platelets recovers after discontinuation of prasugrel treatment. Therefore, 16 patients who suffered from ST-elevation myocardial infarction were investigated. Patients were treated with aspirin (100 mg/day, long-term) and stopped taking prasugrel (10 mg/day) after one year. Blood was collected at the last day of prasugrel intake and at 1, 2, 5, 12 and 30 days later. Platelet function in response to ADP was normalized between five and 30 days after treatment cessation and in vitro addition of the reversible P2Y12 receptor antagonist ticagrelor fully suppressed the regained activation response. Discontinuation of prasugrel resulted in the formation of an emerging subpopulation of ADP-responsive platelets, exhibiting high expression of active integrin αIIbβ3. Two different mRNA probes, thiazole orange and the novel 5'Cy5-oligo-dT probe revealed that this subpopulation consisted of juvenile platelets, which progressively contributed to platelet aggregation and thrombus formation under flow. During offset, juvenile platelets were overall more reactive than older platelets. Interestingly, the responsiveness of both juvenile and older platelets increased in time, pointing towards a residual inhibitory effect of prasugrel on the megakaryocyte level. In conclusion, the gradual increase in thrombogenicity after cessation of prasugrel treatment is due to the increased activity of juvenile platelets.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | - Leo F Veenstra
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | - Rick Wetzels
- Central Diagnostic Laboratory, Maastricht University Medical Centre, The Netherlands
| | - Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, The Netherlands
| | - Harry Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | | | | | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
10
|
Hanel RA, Taussky P, Dixon T, Miller DA, Sapin M, Nordeen JD, Tawk RG, Navarro R, Johns G, Freeman WD. Safety and efficacy of ticagrelor for neuroendovascular procedures. A single center initial experience. J Neurointerv Surg 2013; 6:320-2. [DOI: 10.1136/neurintsurg-2013-010699] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Teng R. Pharmacokinetic, Pharmacodynamic and Pharmacogenetic Profile of the Oral Antiplatelet Agent Ticagrelor. Clin Pharmacokinet 2012; 51:305-18. [DOI: 10.2165/11630960-000000000-00000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|